Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action.

[1]  Ernest Beutler,et al.  Red Cell Metabolism: A Manual of Biochemical Methods , 1975 .

[2]  J. Haynes,et al.  Quantitative assessment of antimalarial activity in vitro by a semiautomated microdilution technique , 1979, Antimicrobial Agents and Chemotherapy.

[3]  I. Sherman,et al.  Plasmodium lophurae: composition and properties of hemozoin, the malarial pigment. , 1979, Experimental parasitology.

[4]  C. D. Fitch,et al.  Hemin lyses malaria parasites. , 1981, Science.

[5]  A. Chou,et al.  Mechanism of hemolysis induced by ferriprotoporphyrin IX. , 1981, The Journal of clinical investigation.

[6]  M. Pfaller,et al.  Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquine-ferriprotoporphyrin IX complex , 1982, Antimicrobial Agents and Chemotherapy.

[7]  H. Ginsburg,et al.  The effect of ferriprotoporphyrin IX and chloroquine on phospholipid monolayers and the possible implications to antimalarial activity. , 1983, Biochimica et biophysica acta.

[8]  J. Jensen,et al.  Stage-dependent effects of chloroquine on Plasmodium falciparum in vitro. , 1983, The Journal of protozoology.

[9]  C. D. Fitch,et al.  Mode of action of antimalarial drugs. , 1983, Ciba Foundation symposium.

[10]  H. Ginsburg,et al.  Interactions of hemin, antimalarial drugs and hemin-antimalarial complexes with phospholipid monolayers. , 1984, Chemistry and physics of lipids.

[11]  U. Muller-eberhard,et al.  Kinetics of the interaction of hemin liposomes with heme binding proteins. , 1984, Biochemistry.

[12]  Heme transfer between phospholipid membranes and uptake by apohemoglobin. , 1985, The Journal of biological chemistry.

[13]  A. Meister Methods for the selective modification of glutathione metabolism and study of glutathione transport. , 1985, Methods in enzymology.

[14]  D. V. Vander Jagt,et al.  Comparison of proteases from chloroquine-sensitive and chloroquine-resistant strains of Plasmodium falciparum. , 1987, Biochemical pharmacology.

[15]  P Lee,et al.  X-ray microanalysis of Plasmodium falciparum and infected red blood cells: effects of qinghaosu and chloroquine on potassium, sodium, and phosphorus composition. , 1988, The American journal of tropical medicine and hygiene.

[16]  U. Muller-eberhard,et al.  Serum proteins as mediators of hemin efflux from red cell membranes: specificity of hemopexin , 1989, FEBS letters.

[17]  J. Le bras,et al.  Potentiation of chloroquine activity against Plasmodium falciparum by the peroxidase-hydrogen peroxide system , 1990, Antimicrobial Agents and Chemotherapy.

[18]  D. Goldberg Hemoglobin degradation in the malaria parasite : an ordered process in a unique organelle , 1990 .

[19]  D. Goldberg,et al.  Hemoglobin degradation in the malaria parasite Plasmodium falciparum: an ordered process in a unique organelle. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[20]  H. Ginsburg,et al.  Kinetic modelling of the response of Plasmodium falciparum to chloroquine and its experimental testing in vitro. Implications for mechanism of action of and resistance to the drug. , 1990, Biochemical pharmacology.

[21]  B. Chait,et al.  Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: a catabolic pathway initiated by a specific aspartic protease , 1991, The Journal of experimental medicine.

[22]  D. Goldberg,et al.  An iron-carboxylate bond links the heme units of malaria pigment. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[23]  H. Ginsburg,et al.  Studies on the antimalarial mode of action of quinoline-containing drugs: time-dependence and irreversibility of drug action, and interactions with compounds that alter the function of the parasite's food vacuole. , 1991, Life sciences.

[24]  A. Chou,et al.  Heme polymerase: modulation by chloroquine treatment of a rodent malaria. , 1992, Life sciences.

[25]  A. Cerami,et al.  Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites , 1992, Nature.

[26]  H. Ginsburg,et al.  Origin of reactive oxygen species in erythrocytes infected with Plasmodium falciparum. , 1993, Molecular and biochemical parasitology.

[27]  S. Schreier,et al.  Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis. , 1993, Archives of biochemistry and biophysics.

[28]  P. Rosenthal,et al.  The proteases and pathogenicity of parasitic protozoa. , 1993, Annual review of microbiology.

[29]  J W Eaton,et al.  Hemoglobin catabolism and host-parasite heme balance in chloroquine-sensitive and chloroquine-resistant Plasmodium berghei infections. , 1993, The American journal of tropical medicine and hygiene.

[30]  A. Chou,et al.  Control of heme polymerase by chloroquine and other quinoline derivatives. , 1993, Biochemical and biophysical research communications.

[31]  H. Ginsburg,et al.  Hemoglobin denaturation and iron release in acidified red blood cell lysate--a possible source of iron for intraerythrocytic malaria parasites. , 1993, Experimental parasitology.

[32]  S. Meshnick,et al.  Effects of antimalarials and protease inhibitors on plasmodial hemozoin production. , 1994, Molecular and biochemical parasitology.

[33]  H. Ginsburg,et al.  Hexose-monophosphate shunt activity in intact Plasmodium falciparum-infected erythrocytes and in free parasites. , 1994, Molecular and biochemical parasitology.

[34]  T. Egan,et al.  Quinoline anti‐malarial drugs inhibit spontaneous formation of β‐haematin (malaria pigment) , 1994 .

[35]  B. Berger,et al.  Chloroquine resistance is not associated with drug metabolism in Plasmodium falciparum. , 1995, The Journal of parasitology.

[36]  H. Ginsburg,et al.  Heme Degradation in the Presence of Glutathione , 1995, The Journal of Biological Chemistry.

[37]  H. Matile,et al.  Malarial haemozoin/β-haematin supports haem polymerization in the absence of protein , 1995, Nature.

[38]  D. Platel,et al.  Plasmodium berghei: implication of intracellular glutathione and its related enzyme in chloroquine resistance in vivo. , 1995, Experimental parasitology.

[39]  V. C. Pandey,et al.  Heme oxygenase and related indices in chloroquine-resistant and -sensitive strains of Plasmodium berghei. , 1995, International journal for parasitology.

[40]  D. Goldberg,et al.  The plasmodium digestive vacuole: metabolic headquarters and choice drug target. , 1995, Parasitology today.

[41]  T. Egan,et al.  The chemical mechanism of beta-haematin formation studied by Mössbauer spectroscopy. , 1996, The Biochemical journal.

[42]  D. Sullivan,et al.  Plasmodium Hemozoin Formation Mediated by Histidine-Rich Proteins , 1996, Science.

[43]  B. K. Park,et al.  Amodiaquine accumulation in Plasmodium falciparum as a possible explanation for its superior antimalarial activity over chloroquine. , 1996, Molecular and biochemical parasitology.

[44]  H. Ginsburg,et al.  Resistance of glucose-6-phosphate dehydrogenase deficiency to malaria: effects of fava bean hydroxypyrimidine glucosides on Plasmodium falciparum growth in culture and on the phagocytosis of infected cells , 1996, Parasitology.

[45]  B. Gamain,et al.  Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum. , 1996, Molecular and biochemical parasitology.

[46]  P. Rosenthal,et al.  Hemoglobin catabolism and iron utilization by malaria parasites. , 1996, Molecular and biochemical parasitology.

[47]  Z. Cabantchik,et al.  Mode of action of iron (III) chelators as antimalarials. IV. Potentiation of desferal action by benzoyl and isonicotinoyl hydrazone derivatives. , 1996, The Journal of laboratory and clinical medicine.

[48]  I. Gluzman,et al.  Generation of hemoglobin peptides in the acidic digestive vacuole of Plasmodium falciparum implicates peptide transport in amino acid production. , 1997, Molecular and biochemical parasitology.

[49]  G. Blauer,et al.  Investigations of B- and β-hematin , 1997 .

[50]  D. Sullivan,et al.  Hemoglobin metabolism in the malaria parasite Plasmodium falciparum. , 1997, Annual review of microbiology.

[51]  H. Ginsburg,et al.  The malaria parasite supplies glutathione to its host cell--investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. , 1997, European journal of biochemistry.

[52]  Influence of quinoline-containing antimalarials in the catalase activity of ferriprotoporphyrin IX☆ , 1997 .