Design of digital filters and filter banks by optimization: Applications

DURING the last two decades, the role of digital signal processing (DSP) has changed drastically. Twenty years ago, DSP was mainly a branch of applied mathematics. At that time, the scientists were aware of how to replace continuous-time signal processing algorithms by their discrete-time counterparts providing many attractive properties. These include, among others, a higher accuracy, a higher reliability, a higher flexibility, and, most importantly, a lower cost and the ability to duplicate the product with exactly the same performance.

[1]  T. Ramstad,et al.  Cosine-modulated analysis-synthesis filterbank with critical sampling and perfect reconstruction , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[2]  Bhaskar Sinha,et al.  High-speed recursive digital filter realization , 2017 .

[3]  Emmanuel Ifeachor,et al.  Digital Signal Processing: A Practical Approach , 1993 .

[4]  Markku Renfors,et al.  The maximum sampling rate of digital filters under hardware speed constraints , 1981 .

[5]  Roger Woods,et al.  A high performance systolic IIR filter architecture , 1988 .

[6]  Jing-Yang Jou,et al.  An efficient algorithm for the multiple constant multiplication problem , 1999, 1999 International Symposium on VLSI Technology, Systems, and Applications. Proceedings of Technical Papers. (Cat. No.99TH8453).

[7]  Tapio Saramäki,et al.  Optimization of frequency-response-masking based FIR filters with reduced complexity , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[8]  Chein-Wei Jen,et al.  Efficient time domain synthesis of pipelined recursive filters , 1994 .

[9]  H. Shaffeu,et al.  Improved design procedure for multiplierless FIR digital filters , 1991 .

[10]  M. A. Soderstrand,et al.  Computer-aided design of pipelined IIR digital filters , 1992, [1992] Proceedings of the 35th Midwest Symposium on Circuits and Systems.

[11]  Mathukumalli Vidyasagar,et al.  New algorithms for constrained minimax optimization , 1977, Math. Program..

[12]  Henrique S. Malvar Modulated QMF filter banks with perfect reconstruction , 1990 .

[13]  Yong Lian,et al.  Frequency-response masking approach for digital filter design: complexity reduction via masking filter factorization , 1994 .

[14]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[15]  A. Constantinides,et al.  Finite word length FIR filter design using integer programming over a discrete coefficient space , 1982 .

[16]  Y. Lim,et al.  Discrete coefficient FIR digital filter design based upon an LMS criteria , 1983 .

[17]  S. Lawson,et al.  Design of efficient digital filters satisfying arbitrary loss and delay specifications , 1992 .

[18]  Henry Samueli A low-complexity multiplierless half-band recursive digital filter design , 1989, IEEE Trans. Acoust. Speech Signal Process..

[19]  Keshab K. Parhi,et al.  Synthesis of Control Circuits in Folded Pipelined , 1992 .

[20]  Keshab K. Parhi,et al.  Pipelined VLSI recursive filter architectures using scattered look-ahead and decomposition , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[21]  Tapio Saramäki,et al.  An algorithm for the design of multiplierless approximately linear-phase lattice-wave digital filters , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[22]  Bede Liu,et al.  The design of cascaded FIR filters , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[23]  S StoneHarold,et al.  A Parallel Algorithm for the Efficient Solution of a General Class of Recurrence Equations , 1973 .

[24]  Michael A. Soderstrand,et al.  Minimum denominator-multiplier pipelined recursive digital filters , 1995 .

[25]  Jong-Jy Shyu,et al.  A new approach to the design of discrete coefficient FIR digital filters , 1995, IEEE Trans. Signal Process..

[26]  Tapio Saramiiki Designing Prototype Filters for Perfect- Reconstruction Cosine-Modulated Filter Banks , 1992 .

[27]  K. S. Arun,et al.  High-speed digital filtering: Structures and finite wordlength effects , 1992, J. VLSI Signal Process..

[28]  Peter Spellucci,et al.  A new technique for inconsistent QP problems in the SQP method , 1998, Math. Methods Oper. Res..

[29]  F. Leeb Lattice wave digital filters with simultaneous conditions on amplitude and phase , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[30]  Alan N. Willson,et al.  Design and implementation of efficient pipelined IIR digital filters , 1995, IEEE Trans. Signal Process..

[31]  A. N. Willson,et al.  A new approach to FIR digital filters with fewer multipliers and reduced sensitivity , 1983 .

[32]  Yong Hoon Lee,et al.  Cascade/parallel form FIR filters with powers-of-two coefficients , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[33]  Truong Q. Nguyen,et al.  The theory and design of arbitrary-length cosine-modulated filter banks and wavelets, satisfying perfect reconstruction , 1996, IEEE Trans. Signal Process..

[34]  Truong Q. Nguyen Near-perfect-reconstruction pseudo-QMF banks , 1994, IEEE Trans. Signal Process..

[35]  Keshab K. Parhi,et al.  Synthesis of control circuits in folded pipelined DSP architectures , 1992 .

[36]  Floyd M. Gardner,et al.  Interpolation in digital modems. I. Fundamentals , 1993, IEEE Trans. Commun..

[37]  Jorge Nocedal,et al.  Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization , 1997, TOMS.

[38]  Keshab K. Parhi,et al.  Pipeline interleaving and parallelism in recursive digital filters. I. Pipelining using scattered look-ahead and decomposition , 1989, IEEE Trans. Acoust. Speech Signal Process..

[39]  Alan N. Willson,et al.  An improved polynomial-time algorithm for designing digital filters with power-of-two coefficients , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[40]  D. H. Horrocks,et al.  Designing digital FIR filters using Tabu search algorithm , 1997, Proceedings of 1997 IEEE International Symposium on Circuits and Systems. Circuits and Systems in the Information Age ISCAS '97.

[41]  Y. Lim,et al.  FIR filter design over a discrete powers-of-two coefficient space , 1983 .

[42]  Truong Q. Nguyen,et al.  A general formulation of modulated filter banks , 1999, IEEE Trans. Signal Process..

[43]  Philip E. Gill,et al.  Practical optimization , 1981 .

[44]  Tanja Karp,et al.  Computationally efficient realization of MDFT filter banks , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[45]  Yong Lian,et al.  The optimum design of one- and two-dimensional FIR filters using the frequency response masking technique , 1993 .

[46]  Lajos Gazsi,et al.  Explicit formulas for lattice wave digital filters , 1985 .

[47]  S. P. Kim,et al.  Block digital filter structures and their finite precision responses , 1996 .

[48]  K. Surma-aho,et al.  Design of approximately linear phase recursive filters , 1997 .

[49]  Roger Fletcher,et al.  A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..

[50]  D. Ait-Boudaoud,et al.  Modified sensitivity criterion for the design of powers-of-two FIR filters , 1993 .

[51]  Gerald Schuller,et al.  Modulated filter banks with arbitrary system delay: efficient implementations and the time-varying case , 2000, IEEE Trans. Signal Process..

[52]  Y. Lim Design of discrete-coefficient-value linear phase FIR filters with optimum normalized peak ripple magnitude , 1990 .

[53]  Juha Yli-Kaakinen Optimization of recursive digital filters for practical implementation , 1998 .

[54]  Garret N. Vanderplaats,et al.  Numerical optimization techniques for engineering design , 1999 .

[55]  Gerald Schuller Time-varying filter banks with variable system delay , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[56]  A. Tits,et al.  User's Guide for FSQP Version 2.0 A Fortran Code for Solving Optimization Problems, Possibly Minimax, with General Inequality Constraints and Linear Equality Constraints, Generating Feasible Iterates , 1990 .

[57]  Andrew G. Dempster,et al.  Comparison of fixed-point FIR digital filter design techniques , 1997 .

[58]  Alfred Mertins Subspace approach for the design of cosine-modulated filter banks with linear-phase prototype filter , 1998, IEEE Trans. Signal Process..

[59]  Yong Ching Lim,et al.  The design of cascade form FIR filters for discrete space implementation , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[60]  Truong Q. Nguyen Digital filter bank design quadratic-constrained formulation , 1995, IEEE Trans. Signal Process..

[61]  Tapio Saramäki,et al.  A systematic technique for designing prototype filters for perfect reconstruction cosine modulated and modified DFT filter banks , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[62]  R. Gnanasekaran,et al.  Pipelining techniques for IIR digital filters , 1990, IEEE International Symposium on Circuits and Systems.

[63]  Yong Ching Lim,et al.  Design of discrete coefficient FIR digital filters with arbitrary amplitude and phase responses , 1993 .

[64]  Henrique S. Malvar Extended lapped transforms: properties, applications, and fast algorithms , 1992, IEEE Trans. Signal Process..

[65]  P. Boonyanant,et al.  Direct form-based pipelined IIR filter realization , 1998, IEEE. APCCAS 1998. 1998 IEEE Asia-Pacific Conference on Circuits and Systems. Microelectronics and Integrating Systems. Proceedings (Cat. No.98EX242).

[66]  Yoshiaki Tadokoro,et al.  A simple design of FIR filters with powers-of-two coefficients , 1988 .

[67]  R. Wallace Is this a practical approach? , 2001, Journal of the American College of Surgeons.

[68]  P. P. Vaidyanathan,et al.  New results on cosine-modulated FIR filter banks satisfying perfect reconstruction , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[69]  Andrew G. Dempster,et al.  General algorithms for reduced-adder integer multiplier design , 1995 .

[70]  C. W. Farrow,et al.  A continuously variable digital delay element , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[71]  J. McClellan,et al.  A unified approach to the design of optimum FIR linear-phase digital filters , 1973 .

[72]  R. Nouta The jaumann structure in wave‐digital filters , 1974 .

[73]  Tapio Saramäki,et al.  Linear phase IIR filters composed of two parallel allpass sections , 1994, Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS '94.

[74]  Paul Fortier,et al.  Systematic Design of Pipelined Recursive Filters , 1993, IEEE Trans. Computers.

[75]  Lars Wanhammar,et al.  High-speed recursive digital filters based on the frequency-response masking approach , 2000 .

[76]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[77]  L. Montgomery Smith,et al.  Decomposition of FIR digital filters for realization via the cascade connection of subfilters , 1998, IEEE Trans. Signal Process..

[78]  Yong Ching Lim,et al.  Signed power-of-two term allocation scheme for the design of digital filters , 1999 .

[79]  Keshab K. Parhi,et al.  Pipeline interleaving and parallelism in recursive digital filters. II. Pipelined incremental block filtering , 1989, IEEE Trans. Acoust. Speech Signal Process..

[80]  G. Charles Automatic differentiation and iterative processes , 1992 .

[81]  Martin Berz,et al.  Computational differentiation : techniques, applications, and tools , 1996 .

[82]  A. Antoniou,et al.  Sequential design of FIR digital filters for low-power DSP applications , 1997, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136).

[83]  Peter Spellucci,et al.  An SQP method for general nonlinear programs using only equality constrained subproblems , 1998, Math. Program..

[84]  Tapio Saramäki,et al.  Optimization of FIR filters using the frequency-response masking approach , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[85]  Yong Ching Lim,et al.  Frequency-response masking approach for the synthesis of sharp linear phase digital filters , 1986 .

[86]  Yong Ching Lim Parallel and pipelined implementations of injected numerator lattice digital filters , 1995 .

[87]  Yong Ching Lim,et al.  An efficient algorithm to design weighted minimax perfect reconstruction quadrature mirror filter banks , 1999, IEEE Trans. Signal Process..

[88]  Andreas Antoniou,et al.  Efficient iterative design method for cosine-modulated QMF banks , 1996, IEEE Trans. Signal Process..

[89]  Patrick Schaumont,et al.  A new algorithm for elimination of common subexpressions , 1999, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[90]  Henrique S. Malvar Extended lapped transforms: fast algorithms and applications , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[91]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[92]  F. Gardner Interpolation in Digital Modems-Part I: Fundamentals , 2000 .

[93]  Douglas L. Jones,et al.  Improvement in finite wordlength FIR digital filter design by cascading , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[94]  A. Fettweis,et al.  Wave digital lattice filters , 1974 .

[95]  A. Jones,et al.  Design of cascaded allpass structures with magnitude and delay constraints using simulated annealing and quasi-Newton methods , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[96]  Truong Q. Nguyen A class of generalized cosine-modulated filter bank , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[97]  R. Hartley Subexpression sharing in filters using canonic signed digit multipliers , 1996 .

[98]  M. Renfors,et al.  Signal processor implementation of digital all-pass filters , 1988, IEEE Trans. Acoust. Speech Signal Process..

[99]  H. Voelcker,et al.  Digital filtering via block recursion , 1970 .

[100]  T. Saramaki,et al.  Design of very low-sensitivity and low-noise recursive digital filters using a cascade of low-order wave lattice filters , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[101]  Keshab K. Parhi Pipelining in dynamic programming architectures , 1991, IEEE Trans. Signal Process..

[102]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[103]  Lars Wanhammar,et al.  An MILP Approach for the Design of Linear-Phase FIR Filters with Minimum Number of Signed-Power-of-Two Terms , 2001 .

[104]  S. Biyiksiz,et al.  Multirate digital signal processing , 1985, Proceedings of the IEEE.

[105]  Y. C. Lim A new approach for deriving scattered coefficients of pipelined IIR filters , 1995, IEEE Trans. Signal Process..

[106]  D. Ait-Boudaoud,et al.  Genetic approach to design of multiplierless FIR filters , 1993 .

[107]  Tapio Saramäki,et al.  An efficient approach for designing nearly perfect-reconstruction cosine-modulated and modified DFT filter banks , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[108]  Lars Wanhammar,et al.  Filter structures composed of all-pass and FIR filters for interpolation and decimation by a factor of two , 1999 .

[109]  A. Nagoya,et al.  A Hierarchical Clustering Method for the Multiple Constant Multiplication Problem (Special Section on VLSI Design and CAD Algorithms) , 1997 .

[110]  Miodrag Potkonjak,et al.  Multiple constant multiplications: efficient and versatile framework and algorithms for exploring common subexpression elimination , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[111]  E. D. Re,et al.  Design of biorthogonal M-channel cosine-modulated FIR/IIR filter banks , 2000, IEEE Trans. Signal Process..

[112]  Tapio Saramäki,et al.  An efficient algorithm for the design of lattice wave digital filters with short coefficient wordlength , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[113]  G. Wade,et al.  Multiplier-less FIR filter design using a genetic algorithm , 1994 .

[114]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[115]  Tapio Saramäki,et al.  Design and properties of polynomial-based fractional delay filters , 2000, 2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353).

[116]  André L. Tits,et al.  An SQP Algorithm for Finely Discretized Continuous Minimax Problems and Other Minimax Problems with Many Objective Functions , 1996, SIAM J. Optim..

[117]  Tapio Saramaki On the design of digital filters as a sum of two all-pass filters , 1985 .

[118]  Truong Q. Nguyen A quadratic-constrained least-squares approach to the design of digital filter banks , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[119]  Tamás Henk,et al.  Simultaneous amplitude and phase approximation for lumped and sampled filters , 1991, Int. J. Circuit Theory Appl..

[120]  Yong Ching Lim,et al.  A polynomial-time algorithm for designing digital filters with power-of-two coefficients , 1993, 1993 IEEE International Symposium on Circuits and Systems.

[121]  Chao-Liang Chen,et al.  A trellis search algorithm for the design of FIR filters with signed-powers-of-two coefficients , 1999 .

[122]  Francesco Piazza,et al.  Efficient allocation of power of two terms in FIR digital filter design using tabu search , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[123]  Tanja Karp,et al.  Modified DFT filter banks with perfect reconstruction , 1999 .

[124]  David Bull,et al.  Primitive operator digital filters , 1991 .

[125]  N. J. Fliege,et al.  Computational efficiency of modified DFT polyphase filter banks , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[126]  P. P. Vaidyanathan,et al.  Cosine-modulated FIR filter banks satisfying perfect reconstruction , 1992, IEEE Trans. Signal Process..

[127]  Tapio Saramäki,et al.  An efficient approach for designing nearly perfect-reconstruction low-delay cosine-modulated filter banks , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[128]  Sanjit K. Mitra,et al.  A simple method for designing high-quality prototype filters for M-band pseudo QMF banks , 1995, IEEE Trans. Signal Process..

[129]  Henrique S. Malvar,et al.  Signal processing with lapped transforms , 1992 .

[130]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[131]  Keshab K. Parhi,et al.  Finite word effects in pipelined recursive filters , 1991, IEEE Trans. Signal Process..

[132]  Mark A. Richards Application of Deczky's program for recursive filter design to the design of recursive decimators , 1982 .

[133]  Juha Yli-Kaakinen,et al.  An Algorithm for the Optimization of Pipelined Recursive Digital Filters , 2001 .

[134]  T. Saramaki,et al.  Interpolation filters with arbitrary frequency response for all-digital receivers , 1996, 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96.

[135]  Tapio Saramäki,et al.  A systematic algorithm for the design of multiplierless FIR filters , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[136]  Bede Liu,et al.  Design of cascade form FIR filters with discrete valued coefficients , 1988, IEEE Trans. Acoust. Speech Signal Process..

[137]  Bede Liu,et al.  Pipelined recursive filter with minimum order augmentation , 1992, IEEE Trans. Signal Process..

[138]  T. Parks,et al.  Design of recursive digital filters with optimum magnitude and attenuation poles on the unit circle , 1978 .

[139]  Tapio Saramäki,et al.  Use of the Remez algorithm for designing FIR filters utilizing the frequency-response masking approach , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[140]  Herbert Fischer Automatic differentiation: parallel computation of function, gradient, and Hessian matrix , 1990, Parallel Comput..

[141]  R. Fletcher Practical Methods of Optimization , 1988 .

[142]  H. Samueli,et al.  An improved search algorithm for the design of multiplierless FIR filters with powers-of-two coefficients , 1989 .

[143]  A.E. de la Serna,et al.  Stability of IIR digital filters constructed with the time-domain pipelining technique , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.

[144]  Kyung Hi Chang Improved clustered look-ahead pipelining algorithm with minimum order augmentation , 1997, IEEE Trans. Signal Process..

[145]  David Bull,et al.  Design of low complexity FIR filters using genetic algorithms and directed graphs , 1997 .