Neuronal Adaptation to Visual Motion in Area MT of the Macaque

[1]  R. Desimone,et al.  Local precision of visuotopic organization in the middle temporal area (MT) of the macaque , 2004, Experimental Brain Research.

[2]  A. T. Smith,et al.  Neural correlates of motion after-effects in cat striate cortical neurones: monocular adaptation , 2004, Experimental Brain Research.

[3]  K. H. Britten,et al.  Contrast dependence of response normalization in area MT of the rhesus macaque. , 2002, Journal of neurophysiology.

[4]  K. H. Britten,et al.  Motion adaptation in area MT. , 2002, Journal of neurophysiology.

[5]  J. Movshon,et al.  Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. , 2002, Journal of neurophysiology.

[6]  Nicholas J. Priebe,et al.  Constraints on the source of short-term motion adaptation in macaque area MT. I. the role of input and intrinsic mechanisms. , 2002, Journal of neurophysiology.

[7]  Brian H Scott,et al.  Context-Dependent Adaptive Coding of Interaural Phase Disparity in the Auditory Cortex of Awake Macaques , 2002, The Journal of Neuroscience.

[8]  Eero P. Simoncelli,et al.  Natural image statistics and divisive normalization: Modeling nonlinearity and adaptation in cortical neurons , 2002 .

[9]  E. Chichilnisky,et al.  Adaptation to Temporal Contrast in Primate and Salamander Retina , 2001, The Journal of Neuroscience.

[10]  Nikos K. Logothetis,et al.  Motion Processing in the Macaque: Revisited with Functional Magnetic Resonance Imaging , 2001, The Journal of Neuroscience.

[11]  D. Heeger,et al.  Neuronal Basis of the Motion Aftereffect Reconsidered , 2001, Neuron.

[12]  Robert A. Harris,et al.  Contrast Gain Reduction in Fly Motion Adaptation , 2000, Neuron.

[13]  M. Sur,et al.  Adaptation-Induced Plasticity of Orientation Tuning in Adult Visual Cortex , 2000, Neuron.

[14]  Alexander Thiele,et al.  Neural Correlates of Contrast Detection at Threshold , 2000, Neuron.

[15]  Maria V. Sanchez-Vives,et al.  Membrane Mechanisms Underlying Contrast Adaptation in Cat Area 17In Vivo , 2000, The Journal of Neuroscience.

[16]  K. Ziemons,et al.  The Network of Brain Areas Involved in the Motion Aftereffect , 2000, NeuroImage.

[17]  P. Lennie,et al.  Rapid adaptation in visual cortex to the structure of images. , 1999, Science.

[18]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[19]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[20]  Ravi S. Menon,et al.  Recovery of fMRI activation in motion area MT following storage of the motion aftereffect. , 1999, Journal of neurophysiology.

[21]  E. R. Cohen,et al.  Close correlation between activity in brain area MT/V5 and the perception of a visual motion aftereffect , 1998, Current Biology.

[22]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[23]  Eero P. Simoncelli,et al.  A model of neuronal responses in visual area MT , 1998, Vision Research.

[24]  Frans A. J. Verstraten,et al.  The motion aftereffect , 1998, Trends in Cognitive Sciences.

[25]  M. Carandini,et al.  A tonic hyperpolarization underlying contrast adaptation in cat visual cortex. , 1997, Science.

[26]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[28]  Alexander Grunewald,et al.  Orthogonal motion after-effect illusion predicted by a model of cortical motion processing , 1996, Nature.

[29]  L. Palmer,et al.  Contrast adaptation and excitatory amino acid receptors in cat striate cortex , 1996, Visual Neuroscience.

[30]  R. Snowden,et al.  Spatial frequency adaptation: Threshold elevation and perceived contrast , 1996, Vision Research.

[31]  A. Dale,et al.  Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging , 1995, Nature.

[32]  N Osaka,et al.  Difference of Spatial Frequency Selectivity between Static and Flicker Motion Aftereffects , 1994, Perception.

[33]  M. Cynader,et al.  The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. , 1993, Journal of neurophysiology.

[34]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[35]  D. Heeger Normalization of cell responses in cat striate cortex , 1992, Visual Neuroscience.

[36]  W. Newsome,et al.  Microstimulation in visual area MT: effects on direction discrimination performance , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  B L Whitsel,et al.  Mechanisms underlying somatosensory cortical dynamics: II. In vitro studies. , 1992, Cerebral cortex.

[38]  R M Douglas,et al.  Position-specific adaptation in simple cell receptive fields of the cat striate cortex. , 1991, Journal of neurophysiology.

[39]  R A Andersen,et al.  The response of area MT and V1 neurons to transparent motion , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  A. B. Bonds Temporal dynamics of contrast gain in single cells of the cat striate cortex , 1991, Visual Neuroscience.

[41]  H. Barlow Vision: A theory about the functional role and synaptic mechanism of visual after-effects , 1991 .

[42]  John H. R. Maunsell,et al.  Coding of image contrast in central visual pathways of the macaque monkey , 1990, Vision Research.

[43]  Trichur Raman Vidyasagar Pattern adaptation in cat visual cortex is a co-operative phenomenon , 1990, Neuroscience.

[44]  P. Lennie,et al.  Contrast adaptation in striate cortex of macaque , 1989, Vision Research.

[45]  K. H. Britten,et al.  Neuronal correlates of a perceptual decision , 1989, Nature.

[46]  A. Saul,et al.  Adaptation in single units in visual cortex: The tuning of aftereffects in the temporal domain , 1989, Visual Neuroscience.

[47]  M. Cynader,et al.  Direction-selective adaptation in simple and complex cells in cat striate cortex. , 1988, Journal of neurophysiology.

[48]  A. B. Bonds,et al.  Contrast adaptation in cat visual cortex is not mediated by GABA , 1986, Brain Research.

[49]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[50]  S. Petersen,et al.  Direction-specific adaptation in area MT of the owl monkey , 1985, Brain Research.

[51]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[52]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[53]  D. G. Albrecht,et al.  Spatial contrast adaptation characteristics of neurones recorded in the cat's visual cortex. , 1984, The Journal of physiology.

[54]  C. Enroth-Cugell,et al.  Chapter 9 Visual adaptation and retinal gain controls , 1984 .

[55]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[57]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.

[58]  P. Lennie,et al.  Pattern-selective adaptation in visual cortical neurones , 1979, Nature.

[59]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[60]  R. von der Heydt,et al.  Movement aftereffects in the visual cortex. , 1978, Archives italiennes de biologie.

[61]  R. Vautin,et al.  Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects. , 1977, Journal of neurophysiology.

[62]  D. Tolhurst,et al.  Is spatial adaptation an after‐effect of prolonged inhibition? , 1974, The Journal of physiology.

[63]  S. Zeki Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey , 1974, The Journal of physiology.

[64]  L. Maffei,et al.  Neural Correlate of Perceptual Adaptation to Gratings , 1973, Science.

[65]  D. Tolhurst Separate channels for the analysis of the shape and the movement of a moving visual stimulus , 1973, The Journal of physiology.

[66]  H. Barlow,et al.  Evidence for a Physiological Explanation of the Waterfall Phenomenon and Figural After-effects , 1963, Nature.

[67]  R. Sekuler,et al.  Aftereffect of Seen Motion with a Stabilized Retinal Image , 1963, Science.

[68]  N. Sutherland Figural After-Effects and Apparent Size , 1961 .