Adaptive Wavelet and Frame Schemes for Elliptic and Parabolic Equations
暂无分享,去创建一个
[1] L. Nikolova,et al. On ψ- interpolation spaces , 2009 .
[2] B. Jawerth,et al. A discrete transform and decompositions of distribution spaces , 1990 .
[3] Stephan Dahlke,et al. Besov regularity for elliptic boundary value problems in polygonal domains , 1999 .
[4] M. Roche,et al. Rosenbrock methods for Differential Algebraic Equations , 1987 .
[5] Ingrid Daubechies,et al. Ten Lectures on Wavelets , 1992 .
[6] Alexander Ostermann,et al. Runge-Kutta methods for partial differential equations and fractional orders of convergence , 1992 .
[7] Tsogtgerel Gantumur,et al. An optimal adaptive wavelet method for nonsymmetric and indefinite elliptic problems , 2008 .
[8] Jens Lang,et al. Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems - Theory, Algorithm, and Applications , 2001, Lecture Notes in Computational Science and Engineering.
[9] Kjell Gustafsson,et al. Control of Error and Convergence in ODE Solvers , 1992 .
[10] D. Hardin,et al. Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets , 1999 .
[11] J. M. Sanz-Serna,et al. Stability and convergence at the PDE/stiff ODE interface , 1989 .
[12] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[13] Daisuke Fujiwara,et al. Concrete Characterization of the Domains of Fractional Powers of Some Elliptic Differential Operators of the Second Order , 1967 .
[14] W. Dahmen,et al. Biorthogonal Spline Wavelets on the Interval—Stability and Moment Conditions , 1999 .
[15] Gerd Steinebach,et al. Order-reduction of ROW-methods for DAEs and method of lines applications , 1995 .
[16] Rob P. Stevenson,et al. Wavelets with patchwise cancellation properties , 2006, Math. Comput..
[17] Wolfgang Dahmen,et al. Wavelets on Manifolds I: Construction and Domain Decomposition , 1999, SIAM J. Math. Anal..
[18] Rob P. Stevenson,et al. Composite Wavelet Bases with Extended Stability and Cancellation Properties , 2007, SIAM J. Numer. Anal..
[19] Carlos E. Kenig,et al. The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .
[20] G. Beylkin. Wavelets and Fast Numerical Algorithms , 1993, comp-gas/9304004.
[21] Rong-Qing Jia,et al. Wavelet bases of Hermite cubic splines on the interval , 2006, Adv. Comput. Math..
[22] P. Grisvard. Singularities in Boundary Value Problems , 1992 .
[23] C. R. Deboor,et al. A practical guide to splines , 1978 .
[24] Angela Kunoth,et al. Wavelets on manifolds: An optimized construction , 2006, Math. Comput..
[25] O. Christensen. An introduction to frames and Riesz bases , 2002 .
[26] R. DeVore,et al. Besov regularity for elliptic boundary value problems , 1997 .
[27] George C. Donovan,et al. Intertwining multiresolution analyses and the construction of piecewise-polynomial wavelets , 1996 .
[28] S. Lang. Introduction to Complex Hyperbolic Spaces , 1987 .
[29] W. Dahmen,et al. Wavelets with Complementary Boundary Conditions — Function Spaces on the Cube , 1998 .
[30] Karlheinz Gröchenig,et al. Localized Frames Are Finite Unions of Riesz Sequences , 2003, Adv. Comput. Math..
[31] K. Strehmel,et al. Linear-implizite Runge-Kutta-Methoden und ihre Anwendung , 1992 .
[32] A stable and accurate explicit scheme forparabolic evolution equationsAmir , 2007 .
[33] H. Johnen,et al. On the equivalence of the K-functional and moduli of continuity and some applications , 1976, Constructive Theory of Functions of Several Variables.
[34] Dongwoo Sheen,et al. A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..
[35] Lloyd N. Trefethen,et al. Reviving the Method of Particular Solutions , 2005, SIAM Rev..
[36] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[37] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Nonlinear Variational Problems , 2003, SIAM J. Numer. Anal..
[38] Wolfgang Dahmen,et al. Fast computation tools for adaptive wavelet schemes , 2005 .
[39] Wolfgang Dahmen,et al. Adaptive Wavelet Methods II—Beyond the Elliptic Case , 2002, Found. Comput. Math..
[40] C. Moler,et al. APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .
[41] J. Kadlec,et al. On the regularity of the solution of the Poisson problem on a domain with boundary locally similar t , 1964 .
[42] W. Dahmen,et al. Biorthogonal Multiwavelets on the Interval: Cubic Hermite Splines , 2000 .
[43] Folkmar Bornemann,et al. An adaptive multilevel approach to parabolic equations I. General theory and 1D implementation , 1991, IMPACT Comput. Sci. Eng..
[44] Rob P. Stevenson,et al. Adaptive Solution of Operator Equations Using Wavelet Frames , 2003, SIAM J. Numer. Anal..
[45] Peter Oswald. Frames and Space Splittings in Hilbert Spaces , 2004 .
[46] F. Smithies. Linear Operators , 2019, Nature.
[47] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[48] 田辺 広城,et al. Equations of evolution , 1979 .
[49] E. Hairer,et al. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .
[50] Peter Oswald. Multilevel Frames and Riesz Bases in Sobolev Spaces , 2004 .
[51] Peter Deuflhard,et al. Numerische Mathematik II , 1994 .
[52] Kai Bittner,et al. Biorthogonal Spline Wavelets on the Interval , 2005 .
[53] Jens Lang,et al. ROS3P—An Accurate Third-Order Rosenbrock Solver Designed for Parabolic Problems , 2000 .
[54] C. Lubich,et al. Linearly implicit time discretization of non-linear parabolic equations , 1995 .
[55] R. Schneider,et al. Multiskalen- und Wavelet-Matrixkompression: Analysisbasierte Methoden zur effizienten Lösung großer vollbesetzter Gleichungssysteme , 1995 .
[56] Folkmar A. Bornemann,et al. An adaptive multilevel approach to parabolic equations : II. Variable-order time discretization based on a multiplicative error correction , 1991, IMPACT Comput. Sci. Eng..
[57] Qingtang Jiang,et al. Spectral Analysis of the Transition Operator and Its Applications to Smoothness Analysis of Wavelets , 2002, SIAM J. Matrix Anal. Appl..
[58] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[59] C. Chui,et al. Wavelets on a Bounded Interval , 1992 .
[60] Reinhold Schneider,et al. Multiskalen- und Wavelet-Matrixkompression , 1998 .
[61] Folkmar Bornemann,et al. Adaptive multilevel discretization in time and space for parabolic partial differential equations. , 1989 .
[62] Peter Oswald,et al. Multilevel Finite Element Approximation , 1994 .
[63] C. Bennett,et al. Interpolation of operators , 1987 .
[64] I. Daubechies,et al. Wavelets on the Interval and Fast Wavelet Transforms , 1993 .
[65] Peter Deuflhard,et al. Numerische Mathematik. I , 2002 .
[66] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[67] R. Gribonval,et al. Bi-framelet systems with few vanishing moments characterize Besov spaces , 2004 .
[68] Jens Lang,et al. On Global Error Estimation and Control for Initial Value Problems , 2007, SIAM J. Sci. Comput..
[69] GermanyNumerische Mathematik,et al. Multilevel Preconditioning , 1992 .
[70] Alexander Ostermann,et al. Rosenbrock methods for partial differential equations and fractional orders of convergence , 1993 .
[71] R. Gribonval,et al. Nonlinear approximation with bi-framelets , 2005 .
[72] H. Triebel. Theory Of Function Spaces , 1983 .
[73] Willem Hundsdorfer,et al. A Second-Order Rosenbrock Method Applied to Photochemical Dispersion Problems , 1999, SIAM J. Sci. Comput..
[74] Wolfgang Dahmen,et al. A semigroup approach to the numerical solution of parabolic differential equations , 2005 .
[75] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[76] K. Gröchenig. Localization of Frames, Banach Frames, and the Invertibility of the Frame Operator , 2004 .
[77] R. DeVore,et al. Nonlinear approximation , 1998, Acta Numerica.
[78] Wolfgang Dahmen,et al. Adaptive Wavelet Methods : Basic Concepts and Applications to the Stokes Problem , 2002 .
[79] Wolfgang Dahmen,et al. Adaptive Wavelet Methods for Saddle Point Problems - Optimal Convergence Rates , 2002, SIAM J. Numer. Anal..
[80] I. Daubechies,et al. Biorthogonal bases of compactly supported wavelets , 1992 .
[81] Albert Cohen,et al. Wavelet adaptive method for second order elliptic problems: boundary conditions and domain decomposition , 2000, Numerische Mathematik.
[82] P. Lemarié,et al. Base d'ondelettes sur les groupes de Lie stratifiés , 1989 .
[83] J. M. Sanz-Serna,et al. Convergence and order reduction of Runge-Kutta schemes applied to evolutionary problems in partial differential equations , 1987 .
[84] Wolfgang Dahmen,et al. Local Decomposition of Refinable Spaces and Wavelets , 1996 .
[85] Wolfgang Dahmen,et al. Stable multiscale bases and local error estimation for elliptic problems , 1997 .
[86] Claudio Canuto,et al. The wavelet element method. Part II: Realization and additional features in 2D and 3D , 1997 .
[87] Vom Fachbereich Mathematik,et al. Stabile biorthogonale Spline-Waveletbasen auf dem Intervall , 2006 .
[88] Wolfgang Dahmen,et al. Adaptive wavelet methods for elliptic operator equations: Convergence rates , 2001, Math. Comput..
[89] Rob Stevenson,et al. On the Compressibility of Operators in Wavelet Coordinates , 2004, SIAM J. Math. Anal..
[90] A. Lunardi. Analytic Semigroups and Optimal Regularity in Parabolic Problems , 2003 .
[91] Dominik Schötzau,et al. hp-discontinuous Galerkin time stepping for parabolic problems , 2001 .
[92] Wolfgang Dahmen,et al. Adaptive Wavelet Schemes for Elliptic Problems - Implementation and Numerical Experiments , 2001, SIAM J. Sci. Comput..
[93] Wolfgang Dahmen,et al. Sparse Evaluation of Compositions of Functions Using Multiscale Expansions , 2003, SIAM J. Math. Anal..
[95] Herbert Amann,et al. Linear and Quasilinear Parabolic Problems , 2019, Monographs in Mathematics.
[96] Claudio Canuto,et al. The wavelet element method. Part I: Construction and analysis. , 1997 .
[97] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[98] Joachim Rang,et al. New Rosenbrock W-Methods of Order 3 for Partial Differential Algebraic Equations of Index 1 , 2005 .
[99] Massimo Fornasier,et al. Intrinsic Localization of Frames , 2005 .
[100] W. Dahmen. Wavelet and multiscale methods for operator equations , 1997, Acta Numerica.
[101] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[102] K. Gröchenig. Describing functions: Atomic decompositions versus frames , 1991 .
[103] Rob P. Stevenson,et al. An optimal adaptive wavelet method without coarsening of the iterands , 2006, Math. Comput..
[104] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[105] J. Craggs. Applied Mathematical Sciences , 1973 .
[106] C. Canuto,et al. Numerical solution of elliptic problems by the Wavelet Element Method , 1998 .
[107] Function Theory , 1951, Nature.
[108] Albert Cohen,et al. Wavelet Methods for Second-Order Elliptic Problems, Preconditioning, and Adaptivity , 1999, SIAM J. Sci. Comput..
[109] Wolfgang Dahmen,et al. Composite wavelet bases for operator equations , 1999, Math. Comput..
[110] I. Lasiecka. Unified theory for abstract parabolic boundary problems—a semigroup approach , 1980 .
[111] 乔花玲,et al. 关于Semigroups of Linear Operators and Applications to Partial Differential Equations的两个注解 , 2003 .
[112] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[113] Stéphane Jaffard. Propriétés des matrices « bien localisées » près de leur diagonale et quelques applications , 1990 .
[114] Albert Cohen,et al. Wavelet methods in numerical analysis , 2000 .
[115] Karlheinz Gröchenig,et al. Localization of frames II , 2004 .
[116] M. Fornasier,et al. Adaptive Frame Methods for Elliptic Operator Equations: The Steepest Descent Approach , 2007 .
[117] Massimo Fornasier,et al. Adaptive frame methods for elliptic operator equations , 2007, Adv. Comput. Math..
[118] Dongwoo Sheen,et al. A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .
[119] Wolfgang Dahmen,et al. Nonlinear Approximation and Adaptive Techniques for Solving Elliptic Operator Equations , 1997 .