Semantic principal video shot classification via mixture Gaussian

As digital cameras become more affordable, digital video now plays an important role in medical education and healthcare. In this paper, we propose a novel framework to facilitate semantic classification of surgery education videos. Specifically, the framework includes: (a) semantic-sensitive video content characterization via principal video shots, (b) semantic video classification via a mixture Gaussian model to bridge the semantic gap between low-level visual features and semantic visual concepts in a specific surgery education video domain.

[1]  B. S. Manjunath,et al.  NeTra-V: toward an object-based video representation , 1997, Electronic Imaging.

[2]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Jing Huang,et al.  An automatic hierarchical image classification scheme , 1998, MULTIMEDIA '98.

[4]  Shih-Fu Chang,et al.  Semantic visual templates: linking visual features to semantics , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[5]  Shaoping Ma,et al.  Relevance feedback in content-based image retrieval: Bayesian framework, feature subspaces, and progressive learning , 2003, IEEE Trans. Image Process..

[6]  Milind R. Naphade,et al.  A probabilistic framework for semantic video indexing, filtering, and retrieval , 2001, IEEE Trans. Multim..

[7]  Zhu Liu,et al.  Multimedia content analysis-using both audio and visual clues , 2000, IEEE Signal Process. Mag..

[8]  Edward Y. Chang,et al.  Discovery of a perceptual distance function for measuring image similarity , 2003, Multimedia Systems.

[9]  Jianping Fan,et al.  MultiView: Multilevel video content representation and retrieval , 2001, J. Electronic Imaging.

[10]  Shih-Fu Chang,et al.  Clustering methods for video browsing and annotation , 1996, Electronic Imaging.

[11]  Stan Z. Li,et al.  Extraction of feature subspaces for content-based retrieval using relevance feedback , 2001, MULTIMEDIA '01.

[12]  Stephen W. Smoliar,et al.  An integrated system for content-based video retrieval and browsing , 1997, Pattern Recognit..

[13]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  C.-C. Jay Kuo,et al.  Learning image similarities and categories from content analysis and relevance feedback , 2000, MULTIMEDIA '00.

[15]  Jianping Fan,et al.  Automatic image segmentation by integrating color-edge extraction and seeded region growing , 2001, IEEE Trans. Image Process..

[16]  Shih-Fu Chang,et al.  A fully automated content-based video search engine supporting spatiotemporal queries , 1998, IEEE Trans. Circuits Syst. Video Technol..