Chemistry with ADF

We present the theoretical and technical foundations of the Amsterdam Density Functional (ADF) program with a survey of the characteristics of the code (numerical integration, density fitting for the Coulomb potential, and STO basis functions). Recent developments enhance the efficiency of ADF (e.g., parallelization, near order‐N scaling, QM/MM) and its functionality (e.g., NMR chemical shifts, COSMO solvent effects, ZORA relativistic method, excitation energies, frequency‐dependent (hyper)polarizabilities, atomic VDD charges). In the Applications section we discuss the physical model of the electronic structure and the chemical bond, i.e., the Kohn–Sham molecular orbital (MO) theory, and illustrate the power of the Kohn–Sham MO model in conjunction with the ADF‐typical fragment approach to quantitatively understand and predict chemical phenomena. We review the “Activation‐strain TS interaction” (ATS) model of chemical reactivity as a conceptual framework for understanding how activation barriers of various types of (competing) reaction mechanisms arise and how they may be controlled, for example, in organic chemistry or homogeneous catalysis. Finally, we include a brief discussion of exemplary applications in the field of biochemistry (structure and bonding of DNA) and of time‐dependent density functional theory (TDDFT) to indicate how this development further reinforces the ADF tools for the analysis of chemical phenomena. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 931–967, 2001

[1]  Tom Ziegler The 1994 Alcan Award Lecture Density functional theory as a practical tool in studies of organometallic energetics and kinetics. Beating the heavy metal blues with DFT , 1995 .

[2]  Evert Jan Baerends,et al.  Relativistic effects on bonding , 1981 .

[3]  Evert Jan Baerends,et al.  Density functional results for isotropic and anisotropic multipole polarizabilities and C6, C7, and C8 Van der Waals dispersion coefficients for molecules , 1997 .

[4]  G. Schreckenbach,et al.  Calculation of NMR Shielding Tensors Using Gauge-Including Atomic Orbitals and Modern Density Functional Theory , 1995 .

[5]  E. Baerends,et al.  Central Bond in the Three CN• Dimers NC–CN, CN–CN and CN–NC: Electron Pair Bonding and Pauli Repulsion Effects , 1992 .

[6]  Fonseca Guerra C,et al.  Charge Transfer and Environment Effects Responsible for Characteristics of DNA Base Pairing. , 1999, Angewandte Chemie.

[7]  Feliu Maseras,et al.  IMOMM: A new integrated ab initio + molecular mechanics geometry optimization scheme of equilibrium structures and transition states , 1995, J. Comput. Chem..

[8]  R. Ahlrichs,et al.  Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory , 1996 .

[9]  H. Bernhard Schlegel,et al.  Reaction Path Following in Mass-Weighted Internal Coordinates , 1990 .

[10]  T. Ziegler,et al.  Application of density functional theory to infrared absorption intensity calculations on main group molecules , 1992 .

[11]  J. G. Snijders,et al.  Time-dependent density functional result for the dynamic hyperpolarizabilities of C60. , 1997 .

[12]  F. Bickelhaupt,et al.  Oxidative Insertion as Frontside SN2 Substitution: Theoretical Investigation of the Model Reaction Systems Pd + CH₃C1. , 1995 .

[13]  E. Baerends,et al.  Atomic reference energies for density functional calculations , 1997 .

[14]  E. Baerends,et al.  Calculation of harmonic frequencies and harmonic force fields by the hartree‐fock‐slater method , 1988 .

[15]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix , 1997 .

[16]  Jan E. Szulejko,et al.  High-Pressure Mass Spectrometric Investigations of the Potential Energy Surfaces of Gas-Phase SN2 Reactions , 1996 .

[17]  T. Woo,et al.  Computer Design of Living Olefin Polymerization Catalysts: A Combined Density Functional Theory and Molecular Mechanics Study , 1998 .

[18]  N. Nibbering,et al.  Gas-phase ion/molecule reactions as studied by Fourier transform ion cyclotron resonance , 1990 .

[19]  E. Baerends Pauli Repulsion Effects in Scattering from and Catalysis by Surfaces , 1992 .

[20]  Arvi Rauk,et al.  On the calculation of bonding energies by the Hartree Fock Slater method , 1977 .

[21]  D. Herschbach,et al.  New methods in quantum theory , 1996 .

[22]  E. Baerends,et al.  Symmetry breaking and ionization from symmetry equivalent inner shells and lone pairs in Xα theory , 1982 .

[23]  J. Meister,et al.  PRINCIPAL COMPONENTS OF IONICITY , 1994 .

[24]  W. Thiel,et al.  Exchange-correlation density functional beyond the gradient approximation , 1998 .

[25]  J. G. Snijders,et al.  Hydrogen Bonding in DNA Base Pairs: Reconciliation of Theory and Experiment , 2000 .

[26]  Michiel Sprik,et al.  New generalized gradient approximation functionals , 2000 .

[27]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[28]  Evert Jan Baerends,et al.  Gas-Phase Base-Induced 1,4-Eliminations: Occurence of Single-, Double- and Triple-Well E1cb Mechanisms , 1995 .

[29]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[30]  Manuela Merchán,et al.  Interpretation of the electronic absorption spectrum of free base porphin by using multiconfigurational second-order perturbation theory , 1998 .

[31]  E. Baerends,et al.  Dissociating energies, vibrational frequencies and 13C NMR chemical shifts of the 18 electron species [M(CO)6]n (M=Hf-Ir, Mo, Tc, Ru, Cr, Mn, Fe). A density functional study. , 1997 .

[32]  G. te Velde,et al.  Three‐dimensional numerical integration for electronic structure calculations , 1988 .

[33]  H. Stoll,et al.  On the calculation of correlation energies in the spin-density functional formalism , 1978 .

[34]  Roald Hoffmann,et al.  Building Bridges Between Inorganic and Organic Chemistry (Nobel Lecture) , 1982 .

[35]  G. Schreckenbach,et al.  Origin of the Hydridic 1H NMR Chemical Shift in Low-Valent Transition-Metal Hydrides , 1996 .

[36]  Tom Ziegler,et al.  A combined density functional and intrinsic reaction coordinate study on the ground state energy surface of H2CO , 1993 .

[37]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .

[38]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[39]  Tom Ziegler,et al.  Optimization of molecular structures by self‐consistent and nonlocal density‐functional theory , 1991 .

[40]  N C Seeman,et al.  RNA double-helical fragments at atomic resolution. I. The crystal and molecular structure of sodium adenylyl-3',5'-uridine hexahydrate. , 1976, Journal of molecular biology.

[41]  E. Baerends,et al.  Theoretical Investigation on Base-Induced 1,2-Eliminations in the Model System F- + CH3CH2F. The Role of the Base as Catalyst , 1993 .

[42]  Tom Ziegler,et al.  Analytic second derivatives of molecular energies: a density functional implementation , 1997 .

[43]  P. V. R. Schleyer,et al.  Sind polare Organometallverbindungen “Carbanionen”? Der Einfluß des Gegenions auf Struktur und Energie von Organoalkalimetallverbindungen , 1994 .

[44]  Tom K. Woo,et al.  Atomic scale modeling of polymerization catalysts , 2000, Computing in Science & Engineering.

[45]  E. Baerends,et al.  Precise density-functional method for periodic structures. , 1991, Physical review. B, Condensed matter.

[46]  L. Hammett,et al.  Physical organic chemistry , 1940 .

[47]  H. Stoll,et al.  A steepest-descent method for the calculation of localized orbitals and pseudoorbitals , 1978 .

[48]  E. Müller Methoden der organischen Chemie (Houben-Weyl) , 1952 .

[49]  Krishnan Raghavachari,et al.  Methyllithium and its oligomers. Structural and energetic relationships , 1988 .

[50]  J. G. Snijders,et al.  Improved density functional theory results for frequency‐dependent polarizabilities, by the use of an exchange‐correlation potential with correct asymptotic behavior , 1996 .

[51]  T. Clark Odd-electron .sigma. bonds , 1988 .

[52]  W. Hagen,et al.  Density functional calculations of g-tensors of low-spin iron(I) and iron(III) porphyrins , 2000 .

[53]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[54]  Eric Schwegler,et al.  Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build , 1997 .

[55]  Estanislao Silla,et al.  GEPOL: An improved description of molecular surfaces. I. Building the spherical surface set , 1990 .

[56]  G. W. Wheland,et al.  Advanced Organic Chemistry , 1951, Nature.

[57]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[58]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[59]  Tom Ziegler,et al.  Calculation of the G-Tensor of Electron Paramagnetic Resonance Spectroscopy Using Gauge-Including Atomic Orbitals and Density Functional Theory , 1997 .

[60]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[61]  E. Baerends,et al.  A Density Functional Study of the Optical Spectra and Nonlinear Optical Properties of Heteroleptic Tetrapyrrole Sandwich Complexes: The Porphyrinato−Porphyrazinato−Zirconium(IV) Complex as a Case Study , 2000 .

[62]  Jana Khandogin,et al.  A density functional study of nuclear magnetic resonance spin–spin coupling constants in transition-metal systems , 1999 .

[63]  William A. Goddard,et al.  Distance Dependent Hydrogen Bond Potentials for Nucleic Acid Base Pairs from ab Initio Quantum Mechanical Calculations (LMP2/cc-pVTZ) , 1997 .

[64]  Gustavo E. Scuseria,et al.  A fast multipole method for periodic systems with arbitrary unit cell geometries , 1998 .

[65]  Evert Jan Baerends,et al.  A perturbation theory approach to relativistic calculations , 1978 .

[66]  J. G. Snijders,et al.  Implementation of time-dependent density functional response equations , 1999 .

[67]  L. Cavallo,et al.  A combined QM/MM study of ligand substitution enthalpies in the L2Fe(CO)3, RuCpL2Cl, and RuCp*L2Cl systems , 1998 .

[68]  E. Baerends,et al.  Atomic and molecular hydrogen interacting with Pt(111). , 1999 .

[69]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[70]  H. Nakatsuji,et al.  SAC-CI Study on the Excited and Ionized States of Free-Base Porphin: Rydberg Excited States and Effect of Polarization and Rydberg Functions , 1998 .

[71]  Martin Gouterman,et al.  Spectra of porphyrins , 1961 .

[72]  Georg Schreckenbach,et al.  Calculation of NMR shielding tensors based on density functional theory and a scalar relativistic Pauli-type Hamiltonian. The application to transition metal complexes , 1997 .

[73]  Evert Jan Baerends,et al.  Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory , 1998 .

[74]  E. Baerends,et al.  Exchange and correlation energy in density functional theory. Comparison of accurate DFT quantities with traditional Hartree-Fock based ones and generalized gradient approximations for the molecules Li2, N2, F2. , 1997 .

[75]  W. A. WATERS,et al.  Physical Organic Chemistry: , 1941, Nature.

[76]  Célia Fonseca Guerra,et al.  The Nature of the Hydrogen Bond in DNA Base Pairs: The Role of Charge Transfer and Resonance Assistance , 1999 .

[77]  K. M. Ervin,et al.  Translational Activation of the SN2 Nucleophilic Displacement Reactions Cl-+ CH3Cl (CD3Cl) → ClCH3(ClCD3) + Cl-: A Guided Ion Beam Study , 1997 .

[78]  H. Adachi,et al.  Molecular cluster theory for chemisorption of first row atoms on nickel /100/ surfaces , 1976 .

[79]  J. G. Snijders,et al.  Relativistic calculations on the adsorption of CO on the (111) surfaces of Ni, Pd, and Pt within the zeroth-order regular approximation , 1997 .

[80]  J. Bertrán Modifications of Potential Energy Surfaces by Solvation and Catalysis , 1989 .

[81]  G. Barney Ellison,et al.  A gas-phase E2 reaction: methoxide ion and bromopropane , 1989 .

[82]  E. J. Baerends,et al.  Relativistic calculations to assess the ability of the generalized gradient approximation to reproduce trends in cohesive properties of solids , 2000 .

[83]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[84]  Robert S. Mulliken,et al.  Electronic Population Analysis on LCAO‐MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence‐Bond Theories , 1955 .

[85]  Eric Schwegler,et al.  Fast assembly of the Coulomb matrix: A quantum chemical tree code , 1996 .

[86]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[87]  Gustavo E. Scuseria,et al.  Linear scaling conjugate gradient density matrix search as an alternative to diagonalization for first principles electronic structure calculations , 1997 .

[88]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[89]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[90]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[91]  H. Jacobsen,et al.  An implementation of the coupled perturbed Kohn-Sham equations: perturbation due to nuclear displacements , 1997 .

[92]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[93]  F. Bickelhaupt,et al.  Base-Induced Imine-Forming 1,2-Elimination Reactions in the Gas Phase , 1993 .

[94]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[95]  Brian B. Laird,et al.  Chemical Applications of Density-Functional Theory , 1996 .

[96]  P. Wormer,et al.  Density functional calculations of molecular hyperfine interactions in the zero order regular approximation for relativistic effects , 1998 .

[97]  A. Becke Density-functional thermochemistry. II: The effect of the Perdew-Wang generalized-gradient correlation correction , 1992 .

[98]  Gustavo E. Scuseria,et al.  Semiempirical methods with conjugate gradient density matrix search to replace diagonalization for molecular systems containing thousands of atoms , 1997 .

[99]  P. Pulay,et al.  Direct inversion in the iterative subspace (DIIS) optimization of open‐shell, excited‐state, and small multiconfiguration SCF wave functions , 1986 .

[100]  Nicolaas J. R. van Eikema Hommes,et al.  The Carbon−Lithium Electron Pair Bond in (CH3Li)n (n = 1, 2, 4) , 1996 .

[101]  Célia Fonseca Guerra,et al.  Ladungstransfer und molekulare Umgebung sind verantwortlich für Eigenschaften von Wasserstoffbrücken in DNA‐Basenpaaren , 1999 .

[102]  Jan Almlöf,et al.  General methods for geometry and wave function optimization , 1992 .

[103]  Tom Ziegler,et al.  An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package , 1999 .

[104]  Jochen Autschbach,et al.  Nuclear spin–spin coupling constants from regular approximate relativistic density functional calculations. I. Formalism and scalar relativistic results for heavy metal compounds , 2000 .

[105]  G. Schreckenbach,et al.  The calculation of NMR shielding tensors based on density functional theory and the frozen‐core approximation , 1996 .

[106]  I. Bersuker,et al.  Semi‐quantitative and semi‐empirical versions in the quasi‐relativistic SCF‐MO‐LCAO methods: Numerical calculations for (PtCl6)2− , 1977 .

[107]  Peter Margl,et al.  A Combined Car−Parrinello QM/MM Implementation for ab Initio Molecular Dynamics Simulations of Extended Systems: Application to Transition Metal Catalysis , 1997 .

[108]  T. Ziegler,et al.  NMR Spin−Spin Coupling Constants from Density Functional Theory with Slater-Type Basis Functions , 1996 .

[109]  E. J. Baerends,et al.  Approximation of the exchange-correlation Kohn-Sham potential with a statistical average of different orbital model potentials. , 1999 .

[110]  B. Delley,et al.  Efficient and accurate expansion methods for molecules in local density models , 1982 .

[111]  Evert Jan Baerends,et al.  Calculation of bond energies in compounds of heavy elements by a quasi-relativistic approach , 1989 .

[112]  S. Bachrach,et al.  Bond paths and bond properties of carbon-lithium bonds , 1987 .

[113]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[114]  C. Reichardt Solvents and Solvent Effects in Organic Chemistry , 1988 .

[115]  Arvi Rauk,et al.  Carbon monoxide, carbon monosulfide, molecular nitrogen, phosphorus trifluoride, and methyl isocyanide as .sigma. donors and .pi. acceptors. A theoretical study by the Hartree-Fock-Slater transition-state method , 1979 .

[116]  Rodney J. Bartlett,et al.  Coupled-cluster calculations of the electronic excitation spectrum of free base porphin in a polarized basis , 1998 .

[117]  John P. Perdew,et al.  Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation , 1999 .

[118]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[119]  Axel D. Becke,et al.  Simulation of delocalized exchange by local density functionals , 2000 .

[120]  Gustavo E. Scuseria,et al.  A novel form for the exchange-correlation energy functional , 1998 .

[121]  Jacopo Tomasi,et al.  Electrostatic interaction of a solute with a continuum. Improved description of the cavity and of the surface cavity bound charge distribution. , 1987 .

[122]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[123]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[124]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[125]  Martin Head-Gordon,et al.  Derivation and efficient implementation of the fast multipole method , 1994 .

[126]  S. P. Visser,et al.  Sulfur-sulfur three-electron bond dissociation enthalpies of dialkyl sulfide dimer radical cations , 1998 .

[127]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[128]  W. Ot New theoretical concepts for understanding organic reactions , 1990 .

[129]  S. P. Visser,et al.  Nature of the three-electron bond in H2S∴SH2+ , 1998 .

[130]  J. Šponer,et al.  Structures and Energies of Hydrogen-Bonded DNA Base Pairs. A Nonempirical Study with Inclusion of Electron Correlation , 1996 .

[131]  R. Leeuwen,et al.  Exchange-correlation potential with correct asymptotic behavior. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[132]  J. Ferguson,et al.  Threshold Energies and Unimolecular Rate Constants for Elimination of HF from Chemically Activated CF3CH2CH3and CF3CH2CF3: Effect of CH3and CF3Substituents at the β-Carbon and Implications about the Transition State , 1998 .

[133]  J. Schwartz,et al.  Organometallics , 1987, Science.

[134]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[135]  J. G. Snijders,et al.  A relativistic lcao hartree-fock-slater investigation of the electronic structure of the actinocenes M(COT)2, M = Th, Pa, U, Np AND Pu , 1988 .

[136]  L. Curtiss,et al.  Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint , 1988 .

[137]  T. Ziegler,et al.  The determination of intrinsic reaction coordinates by density functional theory , 1994 .

[138]  P. Pulay Convergence acceleration of iterative sequences. the case of scf iteration , 1980 .

[139]  B. M. Gimarc Molecular structure and bonding , 1979 .

[140]  G. Pacchioni,et al.  Cluster Models for Surface and Bulk Phenomena , 1992 .

[141]  P. Pulay Improved SCF convergence acceleration , 1982 .

[142]  Krishnan Raghavachari,et al.  Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities , 1998 .

[143]  D. L. Cooper,et al.  Valence bond calculations of the degree of covalency in a CX bond: Application to CH4 and CH3Li , 1988 .

[144]  L. Cavallo,et al.  The Role of Bulky Substituents in Brookhart-Type Ni(II) Diimine Catalyzed Olefin Polymerization: A Combined Density Functional Theory and Molecular Mechanics Study , 1997 .

[145]  Evert Jan Baerends,et al.  Density functional calculations of nuclear magnetic shieldings using the zeroth-order regular approximation (ZORA) for relativistic effects: ZORA nuclear magnetic resonance , 1999 .

[146]  U. Singh,et al.  A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers , 1986 .

[147]  David Dolphin,et al.  Porphyrins XVII. Vapor absorption spectra and redox reactions: Tetraphenylporphins and porphin , 1971 .

[148]  J. G. Snijders,et al.  On the nature of the first excited states of the uranyl ion , 1984 .

[149]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[150]  Kenneth B. Wiberg,et al.  Comparison of atomic charges derived via different procedures , 1993, J. Comput. Chem..

[151]  Evert Jan Baerends,et al.  Density-functional-theory response-property calculations with accurate exchange-correlation potentials , 1998 .

[152]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[153]  A. van der Avoird,et al.  Density functional calculations of molecular g-tensors in the zero-order regular approximation for relativistic effects , 1997 .

[154]  Joseph J. Grabowski,et al.  Intrinsic competition between elimination and substitution mechanisms controlled by nucleophile structure , 1992 .

[155]  R. Curl,et al.  Infrared Kinetic Spectroscopy Applied to Radical Reaction Yields: Propargyl from the Reaction of Singlet Methylene with Acetylene , 1996, Modern Spectroscopy of Solids, Liquids, and Gases.

[156]  T. Ziegler,et al.  Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls , 1992 .

[157]  Pedro Pedro Gili= Pedro Gili Trujillo Gili,et al.  Exploring chromium (VI) dioxodihalides chemistry: Is density functional theory the most suitable tool? , 1996 .

[158]  M. E. Casida Time-Dependent Density Functional Response Theory for Molecules , 1995 .

[159]  Kimihiko Hirao,et al.  A NEW ONE-PARAMETER PROGRESSIVE COLLE-SALVETTI-TYPE CORRELATION FUNCTIONAL , 1999 .

[160]  E. J. Baerends,et al.  Kohn-Sham potentials and exchange and correlation energy densities from one- and two-electron density matrices for Li2, N2, F2. , 1998 .

[161]  Dennis R. Salahub,et al.  Extension of the LAP functional to include parallel spin correlation , 1997 .

[162]  E. Baerends,et al.  Towards excitation energies and (hyper)polarizability calculations of large molecules. Application of parallelization and linear scaling techniques to time‐dependent density functional response theory , 2000 .

[163]  Mark Earl Casida,et al.  In Recent Advances in Density-Functional Methods , 1995 .

[164]  Michael J. Frisch,et al.  Achieving linear scaling in exchange-correlation density functional quadratures , 1996 .

[165]  N. Nibbering,et al.  Bond dissociation energy of the radical cations dimers of diethyl sulfide, di-n-propyl sulfide and di-n-butyl sulfide , 1996 .

[166]  Jerzy Cioslowski,et al.  A new population analysis based on atomic polar tensors , 1989 .

[167]  Kazuo Kitaura,et al.  A new energy decomposition scheme for molecular interactions within the Hartree‐Fock approximation , 1976 .

[168]  Evert Jan Baerends,et al.  Geometry optimizations in the zero order regular approximation for relativistic effects. , 1999 .

[169]  Evert Jan Baerends,et al.  Towards an order , 1998 .

[170]  Dennis R. Salahub,et al.  New τ-dependent correlation functional combined with a modified Becke exchange , 2000 .

[171]  G. Schreckenbach,et al.  Density functional calculations of NMR chemical shifts and ESR g-tensors , 1998 .

[172]  Tom Ziegler,et al.  Calculation of DFT-GIAO NMR shifts with the inclusion of spin-orbit coupling , 1998 .

[173]  L. A. Curtiss,et al.  Assessment of Modified Gaussian-2 (G2) and Density Functional Theories for Molecules Containing Third-Row Atoms Ga−Kr† , 1997 .

[174]  Amy S. Mullin,et al.  Gas-phase SN2 and E2 reactions of alkyl halides , 1990 .

[175]  J. G. Snijders,et al.  APPLICATION OF TIME-DEPENDENT DENSITY FUNCTIONAL RESPONSE THEORY TO RAMAN SCATTERING , 1996 .

[176]  J. G. Snijders,et al.  Electronic Spectra of M(CO)6 (M = Cr, Mo, W) Revisited by a Relativistic TDDFT Approach , 1999 .

[177]  F. Matthias Bickelhaupt,et al.  The Effect of Microsolvation on E2 and SN2 Reactions: Theoretical Study of the Model System F− + C2H5F + nHF , 1996 .

[178]  J. B. Collins,et al.  Integrated spatial electron populations in molecules: Application to simple molecules , 1980 .

[179]  L. D. Künne,et al.  Recent Developments and Applications of Modern Density Functional Theory , 1998 .

[180]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[181]  Arnold T. Hagler,et al.  Applications of the Adiabatic Connection Method to Conformational Equilibria and Reactions Involving Formic Acid , 1995, Comput. Chem..

[182]  A. Streitwieser,et al.  Ab initio SCF-MO calculations of methyllithium and related systems. Absence of covalent character in the carbon-lithium bonds , 1976 .

[183]  T. Ziegler Approximate Density Functional Theory as a Practical Tool in Molecular Energetics and Dynamics , 1991 .

[184]  F. Bickelhaupt,et al.  Understanding reactivity with Kohn–Sham molecular orbital theory: E2–SN2 mechanistic spectrum and other concepts , 1999 .

[185]  Evert Jan Baerends,et al.  Shape corrections to exchange-correlation potentials by gradient-regulated seamless connection of model potentials for inner and outer region , 2001 .

[186]  Keiji Morokuma,et al.  Potential energy characteristics and energy partitioning in chemical reactions: Abinitio MO study of four‐centered elimination reaction CH3CH2F→CH2=CH2+HF , 1980 .

[187]  G. Schreckenbach,et al.  A Reassessment of the First Metal-Carbonyl Dissociation Energy in M(CO)4 (M = Ni, Pd, Pt), M(CO)5 (M = Fe, Ru, Os), and M(CO)6 (M = Cr, Mo, W) by a Quasirelativistic Density Functional Method , 1995 .

[188]  N C Seeman,et al.  RNA double-helical fragments at atomic resolution. II. The crystal structure of sodium guanylyl-3',5'-cytidine nonahydrate. , 1976, Journal of molecular biology.

[189]  E. Baerends,et al.  Time-dependent density functional calculations on the electronic absorption spectrum of free base porphin , 1999 .

[190]  Mariona Sodupe,et al.  Single versus Double Proton-Transfer Reactions in Watson−Crick Base Pair Radical Cations. A Theoretical Study , 1998 .

[191]  Myung-Hwan Whangbo,et al.  Orbital Interactions in Chemistry , 1985 .

[192]  R. Raffenetti,et al.  Even‐tempered atomic orbitals. II. Atomic SCF wavefunctions in terms of even‐tempered exponential bases , 1973 .

[193]  Y. Ruiz-Morales,et al.  A THEORETICAL STUDY OF 31P AND 95MO NMR CHEMICAL SHIFTS IN M(CO)5PR3 (M = CR, MO; R = H, CH3, C6H5, F, AND CL) BASED ON DENSITY FUNCTIONAL THEORY AND GAUGE-INCLUDING ATOMIC ORBITALS , 1998 .

[194]  J. Nichols,et al.  A generalized fast multipole approach for Hartree—Fock and density functional computations , 1995 .

[195]  Keiji Morokuma,et al.  Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O , 1971 .

[196]  E. Baerends,et al.  Ground State of the (H2O)2+ Radical Cation: DFT versus Post-Hartree−Fock Methods , 1999 .

[197]  E. Baerends,et al.  Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry , 2007 .

[198]  G. Schreckenbach,et al.  The calculation of 77Se chemical shifts using gauge including atomic orbitals and density functional theory , 1996 .

[199]  L. Cavallo,et al.  Implementation of the IMOMM methodology for performing combined QM/MM molecular dynamics simulations and frequency calculations , 1998 .

[200]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[201]  E. Baerends,et al.  Density functional calculations of nuclear quadrupole coupling constants in the zero-order regular approximation for relativistic effects , 2000 .

[202]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[203]  T. Ziegler,et al.  Nonlocal density functional theory as a practical tool in calculations on transition states and activation energies. Applications to elementary reaction steps in organic chemistry , 1992 .

[204]  G. Scuseria,et al.  Analytic energy gradients for the Gaussian very fast multipole method (GvFMM) , 1996 .

[205]  Yosadara Ruiz-Morales,et al.  Calculation of125Te Chemical Shifts Using Gauge-Including Atomic Orbitals and Density Functional Theory , 1997 .

[206]  J. G. Snijders,et al.  A perturbation theory approach to relativistic calculations: II. Molecules , 1979 .

[207]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[208]  Iñaki Tuñón,et al.  GEPOL: An improved description of molecular surfaces II. Computing the molecular area and volume , 1991 .

[209]  V. Bondybey,et al.  High resolution photoelectron spectra of the NO dimer , 1992 .

[210]  A. Klamt,et al.  COSMO : a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient , 1993 .

[211]  Arvi Rauk,et al.  A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method , 1979 .

[212]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[213]  F. Weinhold,et al.  Natural population analysis , 1985 .

[214]  L. Radom,et al.  Structures and stabilities of singly charged three-electron hemibonded systems and their hydrogen-bonded isomers , 1988 .

[215]  A. Klamt Conductor-like Screening Model for Real Solvents: A New Approach to the Quantitative Calculation of Solvation Phenomena , 1995 .

[216]  T. Ziegler,et al.  CH₃• is planar due to steric H-H repulsion. Theoretical study of MH₃•and MH₃Cl (M=C, Si, Ge,Sn). , 1996 .

[217]  Stephen W. Taylor,et al.  KWIK: Coulomb Energies in O(N) Work , 1996 .

[218]  Axel D. Becke,et al.  Density-functional thermochemistry. I. The effect of the exchange-only gradient correction , 1992 .

[219]  K. Fukui The path of chemical reactions - the IRC approach , 1981 .

[220]  P. Gill A new expansion of the Coulomb interaction , 1997 .

[221]  Ronald H. Felton,et al.  A new computational approach to Slater’s SCF–Xα equation , 1975 .

[222]  R. Dreizler,et al.  Density Functional Theory: An Approach to the Quantum Many-Body Problem , 1991 .

[223]  Y. Ruiz-Morales,et al.  Theoretical Study of 13C and 17O NMR Shielding Tensors in Transition Metal Carbonyls Based on Density Functional Theory and Gauge-Including Atomic Orbitals , 1996 .

[224]  Evert Jan Baerends,et al.  Accurate density functional calculations on frequency-dependent hyperpolarizabilities of small molecules , 1998 .

[225]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[226]  Imre G. Csizmadia,et al.  New theoretical concepts for understanding organic reactions , 1989 .

[227]  Michael L. McKee,et al.  A Definitive Investigation of the Gas-Phase Two-Center Three-Electron Bond in [H2S-SH2]+, [Me2S-SMe2]+, and [Et2S-SEt2]+: Theory and Experiment , 1995 .

[228]  D. Chong Recent Advances in Density Functional Methods Part III , 2002 .

[229]  John P. Perdew,et al.  Erratum: Accurate Density Functional with Correct Formal Properties: A Step Beyond the Generalized Gradient Approximation [Phys. Rev. Lett. 82, 2544 (1999)] , 1999 .

[230]  R. Hoffmann,et al.  What Do the Kohn−Sham Orbitals and Eigenvalues Mean? , 1999 .

[231]  Evert Jan Baerends,et al.  A Quantum Chemical View of Density Functional Theory , 1997 .

[232]  P. Schleyer,et al.  Chemical bonding in hypervalent molecules. The dominance of ionic bonding and negative hyperconjugation over d-orbital participation , 1990 .