Tribology of power train systems

The 2017 edition of Volume 18 builds on articles devoted to specific friction- or wear-critical components supported by coverage on the fundamental physical principles of friction, lubrication, and wear. In addition to basic concepts, methods of lab testing and analysis, materials selection, and field diagnosis and monitoring of friction and wear are also covered. The 2017 edition of this volume has undergone a significant expansion and revision of coverage by a new group of global experts. It has been updated with numerous material and technology developments on coatings, lubrication, tool and die wear, and a number of typical tribological components or classes of components. While it is impossible to include all the types of moving mechanical assemblies that pose tribological challenges, Volume 18 emphasizes a structured approach in analyzing complex tribosystems involving thermal, mechanical, materials, and chemical influences. The new Volume 18 provides an essential resource for a broad audience including researchers, engineers, technicians, students, and quality control personnel. The sections on solid friction, lubricants and lubrication, and wear and surface damage contain basic physical principles that help to introduce the materials-oriented professional to established concepts in tribology. The Handbook is also intended for use by individuals with a background in mechanics or lubricant chemistry seeking information on trends and developments on materials and coatings.

[1]  S. Theodossiades,et al.  Transient Tribo-Dynamics of Thermo-Elastic Compliant High-Performance Piston Skirts , 2013, Tribology Letters.

[2]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[3]  E. Broszeit,et al.  Internal Stresses and Their Influence on Material Stresses in Hertzian Contacts—Calculations With Different Stress Hypotheses , 1986 .

[4]  N. Tipei Boundary Conditions of a Viscous Flow Between Surfaces With Rolling and Sliding Motion , 1968 .

[5]  Homer Rahnejat,et al.  Effect of cylinder deactivation on the tribo-dynamics and acoustic emission of overlay big end bearings , 2014 .

[6]  K. Johnson,et al.  The Rheological Properties of Elastohydrodynamic Lubricants , 1986 .

[7]  Homer Rahnejat,et al.  Multi-physics analysis of valve train systems: From system level to microscale interactions , 2007 .

[8]  J. I. McCool,et al.  Relating Profile Instrument Measurements to the Functional Performance of Rough Surfaces , 1987 .

[9]  Homer Rahnejat,et al.  Harmonic decomposition analysis of contact mechanics of bonded layered elastic solids , 2009 .

[10]  A. Cameron,et al.  Elastohydrodynamic Lubrication of a Line Contact , 1974 .

[11]  S. Theodossiades,et al.  Influence of In-Plane Dynamics of Thin Compression Rings on Friction in Internal Combustion Engines , 2012 .

[12]  Homer Rahnejat,et al.  Multi-Body Dynamics: Vehicles, Machines and Mechanisms , 1998 .

[13]  Homer Rahnejat,et al.  Transient elastohydrodynamic lubrication of rough new or worn piston compression ring conjunction with an out-of-round cylinder bore , 2012 .

[14]  Homer Rahnejat,et al.  Tribology of piston compression ring conjunction under transient thermal mixed regime of lubrication , 2013 .

[15]  Homer Rahnejat,et al.  Gear teeth impacts in hydrodynamic conjunctions promoting idle gear rattle , 2007 .

[16]  H. Vogel,et al.  Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten , 1921 .

[17]  T Tian,et al.  Dynamic behaviours of piston rings and their practical impact. Part 1: Ring flutter and ring collapse and their effects on gas flow and oil transport , 2002 .

[18]  Homer Rahnejat,et al.  Lubrication analysis and sub-surface stress field of an automotive differential hypoid gear pair under dynamic loading , 2016 .

[19]  R. Gohar,et al.  Boundary Conditions for Elastohydrodynamics of Circular Point Contacts , 2013, Tribology Letters.

[20]  Homer Rahnejat,et al.  Transmission efficiency and noise, vibration and harshness refinement of differential hypoid gear pairs , 2014 .

[21]  D Dowson,et al.  Transient elastohydrodynamic analysis of elliptical contacts. Part 2: Thermal and Newtonian lubricant solution , 2004 .

[22]  Homer Rahnejat,et al.  Analysis of Handling Characteristics of All-Wheel-Drive Off-Road Vehicles , 2008 .

[23]  H. Rahnejat,et al.  Assessment of friction from compression ring conjunction of a high-performance internal combustion engine: A combined numerical and experimental study , 2016 .

[24]  B. N. J. Perssona The effect of surface roughness on the adhesion of elastic solids , 2001 .

[25]  Homer Rahnejat,et al.  Thermo-Mixed Hydrodynamics of Piston Compression Ring Conjunction , 2013, Tribology Letters.

[26]  David Tabor,et al.  The effect of surface roughness on the adhesion of elastic solids , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[27]  K. Johnson Contact Mechanics: Frontmatter , 1985 .

[28]  Homer Rahnejat,et al.  Valve-train dynamics: A simplified tribo-elasto-multi-body analysis , 2000 .

[29]  PD King,et al.  The influence of piston ring geometry and topography on friction , 2013 .

[30]  Carl Barus,et al.  Isothermals, isopiestics and isometrics relative to viscosity , 1893, American Journal of Science.

[31]  M. Longuet-Higgins The statistical analysis of a random, moving surface , 1957, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[32]  Farshid Sadeghi,et al.  Lubrication regime transitions at the piston ring-cylinder liner interface , 2005 .

[33]  Hertz On the Contact of Elastic Solids , 1882 .

[34]  Homer Rahnejat,et al.  Transient mixed non-Newtonian thermo-elastohydrodynamics of vehicle differential hypoid gears with starved partial counter-flow inlet boundary , 2014 .

[35]  M. M. Cross Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems , 1965 .

[36]  Homer Rahnejat,et al.  Non-Newtonian mixed elastohydrodynamics of differential hypoid gears at high loads , 2014 .

[37]  Ahmet Kahraman,et al.  Prediction of friction-related power losses of hypoid gear pairs , 2007 .

[38]  Roland Larsson,et al.  Lubricant thermal conductivity and heat capacity under high pressure , 2000 .

[39]  R. D. Gibson,et al.  The limit of elastic deformation in the contact of rough surfaces , 1976 .

[40]  T. A. Harris,et al.  A New Fatigue Life Model for Rolling Bearings , 1985 .

[41]  D. Dowson,et al.  Elasto-hydrodynamic lubrication : the fundamentals of roller and gear lubrication , 1966 .

[42]  Homer Rahnejat,et al.  Reducing in-cylinder parasitic losses through surface modification and coating , 2014 .

[43]  M. Reiner,et al.  The Deborah Number , 1964 .

[44]  S. K. Mohan,et al.  Optimisation of AWD off-road vehicle performance using visco-lock devices , 2008 .

[45]  D. Dowson,et al.  Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part IV—Starvation Results , 1976 .

[46]  Homer Rahnejat,et al.  Computational modelling of problems in contact dynamics , 1985 .

[47]  H. Eyring Viscosity, Plasticity, and Diffusion as Examples of Absolute Reaction Rates , 1936 .

[48]  L. Houpert,et al.  New Results of Traction Force Calculations in Elastohydrodynamic Contacts , 1985 .

[49]  Ian Sherrington,et al.  Development of a detailed model for piston-ring lubrication in IC engines with circular and non-circular cylinder Bores , 1997 .

[50]  Ahmet Kahraman,et al.  An Experimental Investigation of Spur Gear Efficiency , 2008 .

[51]  Ahmet Kahraman,et al.  A Transient Mixed Elastohydrodynamic Lubrication Model for Spur Gear Pairs , 2010 .

[52]  T. R. Thomas,et al.  Thermal conductance of a rough elastic contact , 1976 .

[53]  J. Greenwood,et al.  The Contact of Two Nominally Flat Rough Surfaces , 1970 .

[54]  R. Gohar,et al.  Roller bearings under radial and eccentric loads , 1981 .

[55]  Homer Rahnejat,et al.  Multi-body dynamics : monitoring and simulation techniques , 1997 .

[56]  I. Karagiannis,et al.  On the dynamics of lubricated hypoid gears , 2012 .

[57]  Duncan Dowson,et al.  A theoretical analysis of the isothermal elastohydrodynamic lubrication of concentrated contacts. I. Direction of lubricant entrainment coincident with the major axis of the Hertzian contact ellipse , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[58]  H. Rahnejat,et al.  Boundary interactions of rough non-Gaussian surfaces , 2016 .

[59]  Donald F. Hays,et al.  Free Boundaries in Partial Lubrication , 1963 .

[60]  S. Theodossiades,et al.  On the Effect of Transient In-Plane Dynamics of the Compression Ring Upon Its Tribological Performance , 2015 .

[61]  A. M. Walker Statistical Analysis of a Random, Moving Surface , 1957, Nature.

[62]  Fiona McClure Numerical modeling of piston secondary motion and skirt lubrication in internal combustion engines , 2007 .

[63]  Homer Rahnejat,et al.  Transient mixed thermo-elastohydrodynamic lubrication in multi-speed transmissions , 2012 .