Optical signal processing using integrated multi-element SOA-MZI switch arrays for packet switching

The use of discrete but interconnected SOA - MZI switches for performing logical and highly functional processing tasks, demonstrating the multi-functional potential of the photonic switching elements is discussed. An all-optical 3R burst-mode receiver consisting of four SOA - MZI switches and operating error-free with 40 Gb/s optical bursts, proving that interconnection of multiple switching units can lead to the realisation of key network node functionalities offering increased intelligence at the physical layer is presented. In order to allow for easier interconnectiv- ity between the SOA - MZI switches and to provide compactness and cost effectiveness to the developed subsystems, the integration of multiple switches into the same platform is proposed. To this end, the implementation of the first integrated quadruple SOA - MZI switch array is reported, increasing the integration density level and reducing packaging and pigtailing costs. Finally, possible applications of integrated multiple switch arrays are discussed, indicating their suitability for producing compact circuits performing common processing tasks in a multi- wavelength environment, as well as their potential to lead to the development of an all-optical high- speed packet switched node by implementing critical packet switching functionalities in a compact and efficient way.

[1]  A. Kelly,et al.  All-optical parity checker with bit-differential delay , 1999 .

[2]  H. Avramopoulos,et al.  10-Gb/s all-optical half-adder with interferometric SOA gates , 2004, IEEE Photonics Technology Letters.

[3]  Bryan S. Robinson,et al.  100 Gb/s optical time-division multiplexed networks , 2002 .

[4]  C. Bornholdt,et al.  Novel All-Optical 3R Regenerator Concept Demonstrated at 40 Gbit/s , 2002, 2002 28TH European Conference on Optical Communication.

[5]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  Nikos Pleros,et al.  Ultrafast nonlinear interferometer (UNI)-based digital optical circuits and their use in packet switching , 2003 .

[7]  Lian-Kuan Chen,et al.  Theory of burst-mode receiver and its applications in optical multiaccess networks , 1997 .

[8]  C. Ford,et al.  Hybrid integration of monolithic semiconductor optical amplifier arrays using passive assembly , 2005, Proceedings Electronic Components and Technology, 2005. ECTC '05..

[9]  A. Enard,et al.  Wavelength conversion by optimized monolithic integrated Mach-Zehnder interferometer , 1996, IEEE Photonics Technology Letters.

[10]  G. Theophilopoulos,et al.  All-optical packet address and payload separation , 2002, IEEE Photonics Technology Letters.

[11]  Colja Schubert,et al.  Comparison of interferometric all-optical switches for demultiplexing applications in high-speed OTDM systems , 2002 .

[12]  S. Kawanishi,et al.  Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing , 1998 .

[13]  H Avramopoulos,et al.  Compact all-optical packet clock and data recovery circuit using generic integrated MZI switches. , 2005, Optics express.

[14]  Y. Ueno,et al.  168-Gb/s all-optical wavelength conversion with a symmetric-Mach-Zehnder-type switch , 2001, IEEE Photonics Technology Letters.

[15]  Masataka Nakazawa Tb/s OTDM technology , 2001, Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551).

[16]  Gd Giok-Djan Khoe,et al.  Optical packet switching and buffering by using all-optical signal processing methods , 2003 .

[17]  K. Habara,et al.  Design of a 10-Gb/s burst-mode optical packet receiver module and its demonstration in a WDM optical switching network , 2002 .

[18]  Y. Akatsu,et al.  40-gb/s burst-mode optical 2R regenerator , 2005, IEEE Photonics Technology Letters.

[19]  M. Saruwatari,et al.  All-optical signal processing for terabit/second optical transmission , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  A. Kloch,et al.  Experimental investigation at 10 Gb/s of the noise suppression capabilities in a pass-through configuration in SOA-based interferometric structures , 2000, IEEE Photonics Technology Letters.

[21]  Bruno Lavigne,et al.  Optical regeneration at 40 Gb/s and beyond , 2003 .

[22]  N. Calabretta,et al.  Simultaneous Data Demodulation and All-Optical Clock Extraction from Pure DPSK Packets , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[23]  N. Pleros,et al.  Recipe for intensity modulation reduction in SOA-based interferometric switches , 2004, Journal of Lightwave Technology.

[24]  M. Mohrle,et al.  System application of 40 GHz all-optical clock in a 40 Gbit/s optical 3R regenerator , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[25]  V. Lal,et al.  Monolithically integrated Mach-Zehnder interferometer wavelength converter and widely tunable laser in InP , 2003, IEEE Photonics Technology Letters.

[26]  H. de Waardt,et al.  Fast optical flip‐flop by use of Mach–Zehnder interferometers , 2001 .

[27]  A. Poustie,et al.  Very low coupling loss, hybrid-integrated all-optical regenerator with passive assembly , 2002, 2002 28TH European Conference on Optical Communication.

[28]  Nikos Pleros,et al.  Ultrafast time-domain technology and its application in all-optical signal processing , 2003 .

[29]  W. Pieper,et al.  SLALOM: semiconductor laser amplifier in a loop mirror , 1995 .

[30]  Alistair James Poustie,et al.  40 Gbit/s all-optical XOR gate based on hybrid-integrated Mach-Zehnder interferometer , 2003 .

[31]  S. Cabot,et al.  160 Gb/s SOA all-optical wavelength converter andassessment of its regenerative properties , 2004 .

[32]  V. Kaman,et al.  All-optical label swapping networks and technologies , 2000, Journal of Lightwave Technology.

[33]  Y. Ueno,et al.  Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator , 2001, IEEE Photonics Technology Letters.

[34]  Zuqing Zhu,et al.  Nanosecond guard time packet-by-packet burst-mode optical 3R regeneration in an optical-label switching router , 2006, IEEE Photonics Technology Letters.

[35]  W. Pieper,et al.  Monolithically integrated nonlinear Sagnac interferometer and its application as a 20 Gbit/s all-optical demultiplexer , 1996 .

[36]  N. Calabretta,et al.  Ultrafast asynchronous multioutput all-optical header processor , 2004, IEEE Photonics Technology Letters.

[37]  D. M. Spirit,et al.  Ultra-high-speed OTDM networks using semiconductor amplifier-based processing nodes , 1995 .

[38]  Martlesham Heath,et al.  All-optical full adder with bit-differential delay , 1999 .

[39]  O. Zouraraki,et al.  All-Optical Label/Payload Separation at 40 Gb/s , 2006, IEEE Photonics Technology Letters.

[40]  S. Kimura,et al.  A 10-Gbit/s Burst-Mode 3R Receiver Unit with a New Equalizing Amplifier for High-Speed Optical Packet Communications , 2003 .

[41]  Paraskevas Bakopoulos,et al.  Jitter reduction in 40 Gbit/s all-optical 3R regenerator using integrated MZI-SOA switches , 2006 .

[42]  Geert Morthier,et al.  All-optical 2R regeneration based on integrated asymmetric Mach-Zehnder interferometer incorporating MMI-SOA , 2002 .

[43]  H. Avramopoulos,et al.  Clock and data recovery circuit for 10-Gb/s asynchronous optical packets , 2003, IEEE Photonics Technology Letters.

[44]  B. Sartorius,et al.  Semiconductor-based all-optical 3R regenerator demonstrated at 40 Gbit/s , 2004 .

[45]  Zhaoyang Hu,et al.  40-Gb/s optical 3R regeneration using a traveling-wave electroabsorption modulator-based optical clock recovery , 2005, OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005..

[46]  S.A. Hamilton,et al.  40-Gb/s all-optical packet synchronization and address comparison for OTDM networks , 2002, IEEE Photonics Technology Letters.

[47]  J. Leuthold,et al.  160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties , 2004 .

[48]  P. Zakynthinos,et al.  A 40 Gb/s 3R Burst Mode Receiver with 4 integrated MZI switches , 2006, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[49]  K L Hall,et al.  100-Gbit/s bitwise logic. , 1998, Optics letters.

[50]  J. Leuthold,et al.  Wide dynamic range 10-Gb/s DPSK packet receiver using optical-limiting amplifiers , 2004, IEEE Photonics Technology Letters.

[51]  Idelfonso Tafur Monroy,et al.  STOLAS: switching technologies for optically labeled signals , 2003, IEEE Commun. Mag..

[52]  Masayuki Okuno,et al.  Low switching power silica-based super high delta thermo-optic switch with heat insulating grooves , 2002 .

[53]  H. Avramopoulos,et al.  Optical power limiter using a saturated SOA-based interferometric switch , 2004, IEEE Photonics Technology Letters.

[54]  J. Marti,et al.  IST-LASAGNE: towards all-optical label swapping employing optical logic gates and optical flip-flops , 2005, Journal of Lightwave Technology.

[55]  S. Forrest,et al.  All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer , 2003, IEEE Photonics Technology Letters.

[56]  J. Herrera,et al.  All-optical address recognition scheme for label-swapping networks , 2006, IEEE Photonics Technology Letters.

[57]  S. Kitamura,et al.  3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC) , 1998, IEEE Photonics Technology Letters.