Stromelysin-3 (ST3) is a matrix metalloproteinase (MMP) which has been implicated in cancer progression and in a number of conditions involving tissue remodelling. In contrast to other MMPs which are secreted as zymogens requiring extracellular activation, ST3 is found in the extracellular space as a potentially active mature form, suggesting that the activation of the ST3 proform differs from that of other MMPs. We show in the present study that the ST3 proform is not autocatalytically processed in the presence of 4-aminophenylmercuric acetate (APMA). By using ST3/ST2 chimeras, we demonstrate that resistance to APMA is due to properties associated with both the ST3 pro- and catalytic domains. In agreement with the observation made by Pei and Weiss [Pei and Weiss (1995) Nature (London) 375, 244-247], we find that the requirement for activation of the ST3 proform by the furin convertase is entirely contained within a stretch of 10 amino acids located at the junction between the ST3 pro- and catalytic domains. Furin cleaves human and mouse ST3 equally well. However, PACE-4, a furin-like convertase, is much more efficient on the mouse enzyme, suggesting that ST3 protein determinants other than the conserved Ala-Arg-Asn-Arg-Gln-Lys-Arg sequence preceding the furin cleavage site are implicated in PACE-4 action. Finally, we show that processing of the ST3 proform is inhibited by a furin inhibitor in human MCF7 breast cancer cells stably transfected to constitutively express a full-length human ST3 cDNA. Using brefeldin A, we demonstrate that, in these MCF7 cells, the 56 kDa precursor form of ST3 is post-translationally modified in the cis- or media-Golgi into a 62 kDa proform. Thereafter, its processing into the 47 kDa mature form occurs in the trans-Golgi network and is followed by secretion into the extracellular space.