Three-dimensional analysis of a tensile test on a propellant with digital volume correlation

A full three-dimensional study of a tensile test on a sample made of polymerbonded propellant is presented. The analysis combines different tools, namely, X-ray microtomography of an in situ experiment, image acquisition and treatment, 3D volume correlation to measure three-dimensional displacement fields. It allows for global and local strain analyses prior to and after the peak load. By studying the correlation residuals, it is also possible to analyze the damage activity during the experiment.

[1]  Stéphane Roux,et al.  Three dimensional experimental and numerical multiscale analysis of a fatigue crack , 2010 .

[2]  A. Dragon,et al.  A constitutive model for the dynamic and high‐pressure behaviour of a propellant‐like material: Part I: Experimental background and general structure of the model , 2001 .

[3]  P. J. Rae,et al.  White-light digital image cross-correlation (DICC) analysis of the deformation of composite materials with random microstructure , 2004 .

[4]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[5]  C. Truesdell,et al.  The Non-Linear Field Theories of Mechanics , 1965 .

[6]  Stéphane Roux,et al.  Three dimensional image correlation from X-Ray computed tomography of solid foam , 2008 .

[7]  Laurent Babout,et al.  Characterization by X-ray computed tomography of decohesion, porosity growth and coalescence in model metal matrix composites , 2001 .

[8]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[9]  A. Dragon,et al.  Introduction of damage evolution in a scale transition approach for highly-filled particulate composites , 2008 .

[10]  Stéphane Roux,et al.  Experimental investigation of localized phenomena using digital image correlation , 2008 .

[11]  Hubert W. Schreier,et al.  Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .

[12]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  J. Z. Zhu,et al.  The finite element method , 1977 .

[15]  C. Liu,et al.  The cohesive law for the particle/matrix interfaces in high explosives , 2005 .

[16]  C. Nadot-Martin,et al.  Morphology-based homogenization for viscoelastic particulate composites: Part I: Viscoelasticity sole , 2003 .

[17]  E. Maire,et al.  In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics , 2010 .

[18]  Stéphane Roux,et al.  Integrated Digital Image Correlation for the Identification of Mechanical Properties , 2009, MIRAGE.

[19]  S. Roux,et al.  Three dimensional image correlation from X-Ray computed tomography of solid foam , 2007, 0712.2642.

[20]  R. Huiskes,et al.  A three-dimensional digital image correlation technique for strain measurements in microstructures. , 2004, Journal of biomechanics.

[21]  D. Bernard,et al.  Polymeric foam deformation under dynamic loading by the use of the microtomographic technique , 2007 .

[22]  F. Hild,et al.  Extended three-dimensional digital image correlation ( X 3 D-DIC ) Corrélation d ’ images numériques tridimensionnelles étendue ( CINÉ 3 D ) , 2008 .

[23]  D. Bernard,et al.  Impact test deformations of polypropylene foam samples followed by microtomography , 2006 .

[24]  J. Réthoré,et al.  Analysis and Artifact Correction for Volume Correlation Measurements Using Tomographic Images from a Laboratory X-ray Source , 2011 .

[25]  E. Maire,et al.  Three-dimensional analysis of a compression test on stone wool , 2009 .

[26]  C. Nadot-Martin,et al.  A multi-scale “morphological approach” for highly-filled particulate composites: evaluation in hyperelasticity and first application to viscohyperelasticity , 2007 .

[27]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[28]  Jing Fang,et al.  Damage and fracture prediction of plastic-bonded explosive by digital image correlation processing , 2005 .

[29]  Stéphane Roux,et al.  Extended three-dimensional digital image correlation (X3D-DIC) , 2008 .

[30]  Pengwan Chen,et al.  Creep properties identification of PBX using digital image correlation , 2010, International Conference on Experimental Mechanics.

[31]  Stéphane Roux,et al.  3D analysis from micro-MRI during in situ compression on cancellous bone. , 2009, Journal of biomechanics.

[32]  Hilary Bart-Smith,et al.  Compressive deformation and yielding mechanisms in cellular Al alloys determined using X-ray tomography and surface strain mapping , 1998 .

[33]  Peter Cloetens,et al.  Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography , 1999 .

[34]  Long Chen FINITE ELEMENT METHOD , 2013 .

[35]  M. Preuss,et al.  SiC single fibre full-fragmentation during straining in a Ti–6Al–4V matrix studied by synchrotron X-rays , 2002 .

[36]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[37]  A. Dragon,et al.  Damage modelling framework for viscoelastic particulate composites via a scale transition approach , 2006 .

[38]  Dominique Jeulin,et al.  Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l'analyse des matériaux et des structures , 2004 .

[39]  B. Bay,et al.  Digital volume correlation: Three-dimensional strain mapping using X-ray tomography , 1999 .

[40]  Stéphane Roux,et al.  Voxel-Scale Digital Volume Correlation , 2011 .

[41]  M. M. Rashid,et al.  Digital volume correlation including rotational degrees of freedom during minimization , 2002 .