REVIEWS IN BASIC AND CLINICAL GASTROENTEROLOGY Microbes in Gastrointestinal Health and Disease

Most, if not all, animals coexist with a complement of prokaryotic symbionts that confer a variety of physiologic benefits. In humans, the interaction between animal and bacterial cells is especially important in the gastrointestinal tract. Technical and conceptual advances have enabled rapid progress in characterizing the taxonomic composition, metabolic capacity, and immunomodulatory activity of the human gut microbiota, allowing us to establish its role in human health and disease. The human host coevolved with a normal microbiota over millennia and developed, deployed, and optimized complex immune mechanisms that monitor and control this microbial ecosystem. These cellular mechanisms have homeostatic roles beyond the traditional concept of defense against potential pathogens, suggesting these pathways contribute directly to the well-being of the gut. During their coevolution, the bacterial microbiota has established multiple mechanisms to influence the eukaryotic host, generally in a beneficial fashion, and maintain their stable niche. The prokaryotic genomes of the human microbiota encode a spectrum of metabolic capabilities beyond that of the host genome, making the microbiota an integral component of human physiology. Gaining a fuller understanding of both partners in the normal gut-microbiota interaction may shed light on how the relationship can go awry and contribute to a spectrum of immune, inflammatory, and metabolic disorders and may reveal mechanisms by which this relationship could be manipulated toward therapeutic ends.

[1]  S. Pettersson,et al.  Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA , 2004, Nature Immunology.

[2]  J. Gordon,et al.  How host-microbial interactions shape the nutrient environment of the mammalian intestine. , 2002, Annual review of nutrition.

[3]  P. Turnbaugh,et al.  Microbial ecology: Human gut microbes associated with obesity , 2006, Nature.

[4]  M. Selsted,et al.  Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. , 2000, Nature immunology.

[5]  E. Ruby,et al.  The Influence of Cooperative Bacteria on Animal Host Biology , 2005 .

[6]  N. Cerf-Bensussan,et al.  Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport , 2004, Gut.

[7]  R. Ley,et al.  Ecological and Evolutionary Forces Shaping Microbial Diversity in the Human Intestine , 2006, Cell.

[8]  S. Mazmanian,et al.  A microbial symbiosis factor prevents intestinal inflammatory disease , 2008, Nature.

[9]  N. Pace,et al.  Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases , 2007, Proceedings of the National Academy of Sciences.

[10]  A. Puppo,et al.  Reactive oxygen and nitrogen species and glutathione: key players in the legume-Rhizobium symbiosis. , 2006, Journal of experimental botany.

[11]  G. Hecht Microbial Pathogenesis and the Intestinal Epithelial Cell , 2003 .

[12]  M. Cooper,et al.  The Evolution of Adaptive Immune Systems , 2006, Cell.

[13]  L. Hooper,et al.  Epithelial cells and their neighbors. IV. Bacterial contributions to intestinal epithelial barrier integrity. , 2005, American journal of physiology. Gastrointestinal and liver physiology.

[14]  Joseph A. DiDonato,et al.  An Agonist of Toll-Like Receptor 5 Has Radioprotective Activity in Mouse and Primate Models , 2008, Science.

[15]  M. McCarthy,et al.  Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice , 2006, Proceedings of the National Academy of Sciences.

[16]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[17]  C. Sasakawa,et al.  Intestinal villous M cells: an antigen entry site in the mucosal epithelium. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[18]  L. Hooper,et al.  Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin , 2006, Science.

[19]  C. Coban,et al.  Host innate immune receptors and beyond: making sense of microbial infections. , 2008, Cell host & microbe.

[20]  M. Karin,et al.  The two faces of IKK and NF-κB inhibition: prevention of systemic inflammation but increased local injury following intestinal ischemia-reperfusion , 2003, Nature Medicine.

[21]  J. Hoffmann,et al.  The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections , 2007, Nature Reviews Immunology.

[22]  Yu-Tseung Liu,et al.  Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells , 2006, Nature Cell Biology.

[23]  William C. Parks,et al.  Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria , 2000, Nature Immunology.

[24]  V. Annese,et al.  Topical butyrate improves efficacy of 5‐ASA in refractory distal ulcerative colitis: results of a multicentre trial , 2003, European journal of clinical investigation.

[25]  I. Rosenberg,et al.  Translating nutrition science into policy as witness and actor. , 2008, Annual review of nutrition.

[26]  B. Batten,et al.  Cutting Edge: Bacterial Modulation of Epithelial Signaling via Changes in Neddylation of Cullin-11 , 2005, The Journal of Immunology.

[27]  A. Nusrat,et al.  Role of the intestinal barrier in inflammatory bowel disease. , 2008, World journal of gastroenterology.

[28]  Won-Jae Lee Bacterial-Modulated Signaling Pathways in Gut Homeostasis , 2008, Science Signaling.

[29]  A. Gruber,et al.  Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis , 2007, Nature.

[30]  E. Vollaard,et al.  Colonization resistance , 1994, Antimicrobial Agents and Chemotherapy.

[31]  B. Watzl,et al.  Inulin and oligofructose: review of experimental data on immune modulation. , 2007, The Journal of nutrition.

[32]  A. Gewirtz Flag in the crossroads: flagellin modulates innate and adaptive immunity , 2006, Current opinion in gastroenterology.

[33]  D. Podolsky,et al.  Mechanisms of cross hyporesponsiveness to Toll-like receptor bacterial ligands in intestinal epithelial cells. , 2004, Gastroenterology.

[34]  J. Cnota,et al.  Lactobacillus Sepsis Associated With Probiotic Therapy , 2005, Pediatrics.

[35]  J. Bach,et al.  The effect of infections on susceptibility to autoimmune and allergic diseases. , 2002, The New England journal of medicine.

[36]  K. Madsen,et al.  Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. , 1999, Gastroenterology.

[37]  R. Kastelein,et al.  Commensal-dependent expression of IL-25 regulates the IL-23–IL-17 axis in the intestine , 2008, The Journal of experimental medicine.

[38]  S. Kotchoni,et al.  The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants , 2006, Journal of Biosciences.

[39]  D. Relman,et al.  An ecological and evolutionary perspective on human–microbe mutualism and disease , 2007, Nature.

[40]  Wolf-Dietrich Hardt,et al.  The role of microbiota in infectious disease. , 2008, Trends in microbiology.

[41]  Patrice D Cani,et al.  Gut microflora as a target for energy and metabolic homeostasis , 2007, Current opinion in clinical nutrition and metabolic care.

[42]  D. Holden,et al.  Bacterial Interference of Ubiquitination and Deubiquitination , 2007, Cell Host & Microbe.

[43]  J. Gordon,et al.  Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. , 1998, BioEssays : news and reviews in molecular, cellular and developmental biology.

[44]  E. von Mutius Allergies, infections and the hygiene hypothesis--the epidemiological evidence. , 2007, Immunobiology.

[45]  P. Chiarugi,et al.  Protein tyrosine phosphorylation and reversible oxidation: two cross-talking posttranslation modifications. , 2007, Antioxidants & redox signaling.

[46]  B. Lemaître,et al.  Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. , 2000, Immunity.

[47]  Y. Ben-Neriah,et al.  Epithelial NF-κB maintains host gut microflora homeostasis , 2007, Nature Immunology.

[48]  N. Mantis,et al.  Collaboration of epithelial cells with organized mucosal lymphoid tissues , 2001, Nature Immunology.

[49]  P. Sansonetti War and peace at mucosal surfaces , 2004, Nature Reviews Immunology.

[50]  A. Neish,et al.  The Bacterial Fermentation Product Butyrate Influences Epithelial Signaling via Reactive Oxygen Species-Mediated Changes in Cullin-1 Neddylation1 , 2009, The Journal of Immunology.

[51]  C. Jobin,et al.  Gnotobiotic IL-10−/−;NF-κBEGFP Mice Reveal the Critical Role of TLR/NF-κB Signaling in Commensal Bacteria-Induced Colitis1 , 2007, The Journal of Immunology.

[52]  S. Miller,et al.  Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. , 1997, Science.

[53]  M. Hornef,et al.  Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells , 2006, The Journal of experimental medicine.

[54]  Ronald P. DeMatteo,et al.  Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits , 2008, Nature.

[55]  M. Lazar,et al.  Absence of bacterially induced RELMbeta reduces injury in the dextran sodium sulfate model of colitis. , 2006, The Journal of clinical investigation.

[56]  Jason M Doherty,et al.  Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  N. Moran,et al.  Molecular Interactions between Bacterial Symbionts and Their Hosts , 2006, Cell.

[58]  Jennifer M. Bates,et al.  Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. , 2007, Cell host & microbe.

[59]  R. Zinkernagel,et al.  A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. , 2000, Science.

[60]  C. A. de la Motte,et al.  The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. , 2007, Immunity.

[61]  Jeffrey I. Gordon,et al.  Reciprocal Gut Microbiota Transplants from Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection , 2006, Cell.

[62]  C. Jobin,et al.  Gnotobiotic IL-10-/-;NF-kappa B(EGFP) mice reveal the critical role of TLR/NF-kappa B signaling in commensal bacteria-induced colitis. , 2007, Journal of immunology.

[63]  S. Akira,et al.  Toll-Like Receptor 5-Deficient Mice Have Dysregulated Intestinal Gene Expression and Nonspecific Resistance to Salmonella-Induced Typhoid-Like Disease , 2008, Infection and Immunity.

[64]  M. Marinaro,et al.  Probiotics Ameliorate Recurrent Th1-Mediated Murine Colitis by Inducing IL-10 and IL-10-Dependent TGF-β-Bearing Regulatory Cells1 , 2005, The Journal of Immunology.

[65]  J. Lambeth NOX enzymes and the biology of reactive oxygen , 2004, Nature Reviews Immunology.

[66]  R. Aminov,et al.  Commensal gut bacteria: mechanisms of immune modulation. , 2005, Trends in immunology.

[67]  W. Keene,et al.  Use of Templates to Identify Source of Norovirus Outbreak , 2009, Emerging infectious diseases.

[68]  R Balfour Sartor,et al.  Microbial influences in inflammatory bowel diseases. , 2008, Gastroenterology.

[69]  H. Flint,et al.  The rumen microbial ecosystem--some recent developments. , 1997, Trends in microbiology.

[70]  A. Young,et al.  Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. , 2000, Science.

[71]  M. Roberfroid,et al.  Dietary modulation of the human colonic microbiota: updating the concept of prebiotics , 2004, Nutrition Research Reviews.

[72]  F. Shanahan,et al.  The normal intestinal microbiota , 2007, Current opinion in infectious diseases.

[73]  A. Vergunst,et al.  Exploitation of Eukaryotic Ubiquitin Signaling Pathways by Effectors Translocated by Bacterial Type III and Type IV Secretion Systems , 2007, PLoS pathogens.

[74]  A. Aderem,et al.  TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system , 2007, Seminars in Immunopathology.

[75]  Y. Tao,et al.  Probiotics inhibit nuclear factor-kappaB and induce heat shock proteins in colonic epithelial cells through proteasome inhibition. , 2004, Gastroenterology.

[76]  N. Hord Eukaryotic-microbiota crosstalk: potential mechanisms for health benefits of prebiotics and probiotics. , 2008, Annual review of nutrition.

[77]  Michael Karin,et al.  Intracellular pattern recognition receptors in the host response , 2006, Nature.

[78]  Ting Wang,et al.  The gut microbiota as an environmental factor that regulates fat storage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[79]  F. Bäckhed,et al.  Host-Bacterial Mutualism in the Human Intestine , 2005, Science.

[80]  E. Ogier-Denis,et al.  NOX enzymes and Toll-like receptor signaling , 2008, Seminars in Immunopathology.

[81]  F. Guarner,et al.  Mechanisms of Disease: the hygiene hypothesis revisited , 2006, Nature Clinical Practice Gastroenterology &Hepatology.

[82]  A. Macpherson,et al.  Induction of Protective IgA by Intestinal Dendritic Cells Carrying Commensal Bacteria , 2004, Science.

[83]  K. Rokutan,et al.  NADPH oxidases in the gastrointestinal tract: a potential role of Nox1 in innate immune response and carcinogenesis. , 2006, Antioxidants & redox signaling.

[84]  A. Gewirtz,et al.  Flagellin/TLR5 responses in epithelia reveal intertwined activation of inflammatory and apoptotic pathways. , 2006, American journal of physiology. Gastrointestinal and liver physiology.

[85]  M. Karin,et al.  Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. , 2000, Annual review of immunology.

[86]  Marc Parmentier,et al.  Formyl peptide receptors: a promiscuous subfamily of G protein-coupled receptors controlling immune responses. , 2006, Cytokine & growth factor reviews.

[87]  P. Clifton,et al.  Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. , 2001, Physiological reviews.

[88]  J. Coppee,et al.  Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. , 2006, The Journal of Immunology.

[89]  Y. Ben-Neriah,et al.  Epithelial NF-kappaB maintains host gut microflora homeostasis. , 2007, Nature immunology.

[90]  C. De Simone,et al.  Probiotic bacteria enhance murine and human intestinal epithelial barrier function. , 2001, Gastroenterology.

[91]  W. Lee,et al.  A Direct Role for Dual Oxidase in Drosophila Gut Immunity , 2005, Science.

[92]  N. Salzman,et al.  Protection against enteric salmonellosis in transgenic mice expressing a human intestinal defensin , 2003, Nature.

[93]  E. N. Bergman Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. , 1990, Physiological reviews.

[94]  Leo X. Liu,et al.  Addresses: 1Laboratoire de Génétique et , 2022 .

[95]  Jeffrey I. Gordon,et al.  Angiogenins: a new class of microbicidal proteins involved in innate immunity , 2003, Nature Immunology.

[96]  E. Pamer Immune responses to commensal and environmental microbes , 2007, Nature Immunology.

[97]  A. Young,et al.  Prokaryotic Regulation of Epithelial Responses by Inhibition of IκB-α Ubiquitination , 2000 .

[98]  B. Finlay,et al.  Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. , 2007, Cell host & microbe.

[99]  J. Alverdy,et al.  The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. , 2007, Cell host & microbe.

[100]  J. Madara,et al.  Flagellin Is the Major Proinflammatory Determinant of Enteropathogenic Salmonella1 , 2003, The Journal of Immunology.

[101]  Ruslan Medzhitov,et al.  Recognition of Commensal Microflora by Toll-Like Receptors Is Required for Intestinal Homeostasis , 2004, Cell.

[102]  D. Jonkers,et al.  Review article: the role of butyrate on colonic function , 2007, Alimentary pharmacology & therapeutics.

[103]  J. Versalovic,et al.  Lactobacillus rhamnosus GG decreases TNF‐α production in lipopolysaccharide‐activated murine macrophages by a contact‐independent mechanism , 2003, Cellular microbiology.

[104]  M. McFall-Ngai Unseen forces: the influence of bacteria on animal development. , 2002, Developmental biology.

[105]  M. Abreu,et al.  TLR Signaling in the Gut in Health and Disease1 , 2005, The Journal of Immunology.

[106]  N. Pace,et al.  Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. , 2008, Cell host & microbe.

[107]  J. Gordon,et al.  Commensal Host-Bacterial Relationships in the Gut , 2001, Science.

[108]  Dean P. Jones,et al.  Commensal bacteria modulate cullin‐dependent signaling via generation of reactive oxygen species , 2007, The EMBO journal.

[109]  A. Neish,et al.  Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. , 2008, Cell host & microbe.

[110]  R. Knight,et al.  The Human Microbiome Project , 2007, Nature.

[111]  G. Hecht Inflammatory bowel disease--live transmission. , 2008, The New England journal of medicine.

[112]  S. Vavricka,et al.  fMLP induces Hsp27 expression, attenuates NF-kappaB activation, and confers intestinal epithelial cell protection. , 2007, American journal of physiology. Gastrointestinal and liver physiology.

[113]  J. Gordon,et al.  Molecular analysis of commensal host-microbial relationships in the intestine. , 2001, Science.

[114]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[115]  G Gerken,et al.  Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. , 2007, Gastroenterology.

[116]  S. Akira,et al.  Pathogen Recognition and Innate Immunity , 2006, Cell.

[117]  R. Aminov,et al.  Importance of microbial colonization of the gut in early life to the development of immunity. , 2007, Mutation research.

[118]  S. Mazmanian,et al.  An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System , 2005, Cell.

[119]  K. Krause,et al.  The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. , 2007, Physiological reviews.

[120]  M. Neurath,et al.  Epithelial NEMO links innate immunity to chronic intestinal inflammation , 2007, Nature.

[121]  M. Washington,et al.  Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. , 2007, Gastroenterology.

[122]  Frederick M Ausubel,et al.  Evolutionary perspectives on innate immunity from the study of Caenorhabditis elegans. , 2005, Current opinion in immunology.

[123]  N. Rao,et al.  Abundant and Diverse Fungal Microbiota in the Murine Intestine , 2006, Applied and Environmental Microbiology.

[124]  M. Rojas,et al.  Flagellin Treatment Protects against Chemicals, Bacteria, Viruses, and Radiation1 , 2008, The Journal of Immunology.

[125]  S. Meyers Clostridium difficile Colitis , 1999, American Journal of Gastroenterology.

[126]  Wendy S. Garrett,et al.  Communicable Ulcerative Colitis Induced by T-bet Deficiency in the Innate Immune System , 2007, Cell.

[127]  M. McFall-Ngai Identifying 'prime suspects': symbioses and the evolution of multicellularity. , 2001, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[128]  Warren Strober,et al.  The mechanism of action of probiotics , 2007, Current opinion in gastroenterology.

[129]  M. McFall-Ngai Adaptive Immunity: Care for the community , 2007, Nature.

[130]  Jeffrey I. Gordon,et al.  Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Pierre Legrain,et al.  The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[132]  G. Huffnagle,et al.  Does the microbiota regulate immune responses outside the gut? , 2004, Trends in microbiology.

[133]  Natalia N. Ivanova,et al.  Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite , 2007, Nature.

[134]  C. Hill,et al.  Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118 , 2007, Proceedings of the National Academy of Sciences.

[135]  E. Purdom,et al.  Diversity of the Human Intestinal Microbial Flora , 2005, Science.

[136]  T. Macdonald,et al.  Immunity, Inflammation, and Allergy in the Gut , 2005, Science.

[137]  S. Akira,et al.  Deletion of TLR5 results in spontaneous colitis in mice. , 2007, The Journal of clinical investigation.

[138]  B. Aggarwal,et al.  Probiotic Lactobacillus reuteri promotes TNF‐induced apoptosis in human myeloid leukemia‐derived cells by modulation of NF‐κB and MAPK signalling , 2008, Cellular microbiology.

[139]  L. Eckmann,et al.  Amendment history : Corrigendum ( April 2005 ) Toll-like receptor 9 – induced type I IFN protects mice from experimental colitis , 2018 .

[140]  L. Renwrantz,et al.  Analysis of the attraction of haemocytes from Mytilus edulis by molecules of bacterial origin. , 1993, Developmental and comparative immunology.

[141]  K. McCoy,et al.  Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria , 2005, Immunology.

[142]  Vanessa Sperandio,et al.  Bacterial Cell-to-Cell Signaling in the Gastrointestinal Tract , 2005, Infection and Immunity.

[143]  J. Madara,et al.  Structure and function of the intestinal epithelial barrier in health and disease. , 1990, Monographs in pathology.

[144]  C. Karp,et al.  The germless theory of allergic disease: revisiting the hygiene hypothesis , 2001, Nature Reviews Immunology.

[145]  A. Ouwehand Antiallergic effects of probiotics. , 2007, The Journal of nutrition.

[146]  George Grant,et al.  Flagellin suppresses epithelial apoptosis and limits disease during enteric infection. , 2006, The American journal of pathology.

[147]  A. Jesaitis,et al.  Formyl Peptide Receptor-1 Activation Enhances Intestinal Epithelial Cell Restitution through Phosphatidylinositol 3-Kinase-Dependent Activation of Rac1 and Cdc421 , 2007, The Journal of Immunology.

[148]  J. Ryu,et al.  Innate Immune Homeostasis by the Homeobox Gene Caudal and Commensal-Gut Mutualism in Drosophila , 2008, Science.

[149]  K. Michelsen,et al.  Human Intestinal Epithelial Cells Are Broadly Unresponsive to Toll-Like Receptor 2-Dependent Bacterial Ligands: Implications for Host-Microbial Interactions in the Gut 1 , 2003, The Journal of Immunology.

[150]  J. Gordon,et al.  Genomic and Metabolic Studies of the Impact of Probiotics on a Model Gut Symbiont and Host , 2006, PLoS biology.

[151]  E. Mutius Allergies, infections and the hygiene hypothesis--the epidemiological evidence. , 2007 .

[152]  C. Hickman How have bacteria contributed to the evolution of multicellular animals ? , 2005 .

[153]  K. McCoy,et al.  Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. , 2007, Seminars in immunology.

[154]  J. Stein,et al.  Rationale for the luminal provision of butyrate in intestinal diseases , 2000, European journal of nutrition.

[155]  D. P. Strachan,et al.  Hay fever, hygiene, and household size. , 1989, BMJ.

[156]  J. Gordon,et al.  IgA response to symbiotic bacteria as a mediator of gut homeostasis. , 2007, Cell host & microbe.

[157]  P. Sansonetti The innate signaling of dangers and the dangers of innate signaling , 2006, Nature Immunology.

[158]  R. Wilson,et al.  Evolution of Symbiotic Bacteria in the Distal Human Intestine , 2007, PLoS biology.

[159]  M. Boermeester,et al.  Probiotic prophylaxis in predicted severe acute pancreatitis: a randomised, double-blind, placebo-controlled trial , 2008, The Lancet.

[160]  P. Mannon,et al.  The fundamental basis of inflammatory bowel disease. , 2007, The Journal of clinical investigation.

[161]  M. Floch,et al.  Prebiotics, probiotics, and dietary fiber in gastrointestinal disease. , 2007, Gastroenterology clinics of North America.

[162]  A. Neish Microbial Interference with Host Inflammatory Responses , 2003 .

[163]  S. Kang,et al.  An antioxidant system required for host protection against gut infection in Drosophila. , 2005, Developmental cell.