Linear Systems Approach to Multiple-Impulse Trajectory Analysis via Regularization

An, Bn = auxiliary parameters, see Eq. (18) e = eccentricity G s = transfer function H = Heaviside step function h = angular momentum N = number of revolutions n = number of maneuvers p = semilatus rectum r = radial distance s = complex variable u = radial component of velocity v = circumferential component of velocity x = auxiliary variable, see Eq. (2) V = total velocity variation = impulse function = dimensionless parameter = polar angle = gravitational parameter = input function = dimensionless propulsive acceleration = apse-line rotation angle _ = time derivative

[1]  Alessandro Antonio Quarta,et al.  Trajectory Design with Hybrid Low-Thrust Propulsion System , 2007 .

[2]  Colin R. McInnes,et al.  Orbits in a generalized two-body problem , 2003 .

[3]  T. Fukushima New Two-Body Regularization , 2006 .

[4]  Katsuhiko Ogata,et al.  Modern control engineering (3rd ed.) , 1996 .

[5]  Edmund Taylor Whittaker,et al.  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: THE GENERAL THEORY OF ORBITS , 1988 .

[6]  J. Ferrándiz,et al.  Increased accuracy of computations in the main satellite problem through linearization methods , 1992 .

[7]  V. Bond The uniform, regular differential equations of the KS transformed perturbed two-body problem , 1974 .

[8]  S. Alfano,et al.  Circle-to-circle constant-thrust orbit raising , 1994 .

[9]  Toshio Fukushima,et al.  EFFICIENT ORBIT INTEGRATION BY LINEAR TRANSFORMATION FOR KUSTAANHEIMO-STIEFEL REGULARIZATION , 2005 .

[10]  S. N. Rasband,et al.  Chaotic Dynamics of Nonlinear Systems , 1990 .

[11]  Alessandro Antonio Quarta,et al.  Optimal Control Laws for Axially Symmetric Solar Sails , 2005 .

[12]  J. Ferrándiz,et al.  A general canonical transformation increasing the number of variables with application to the two-body problem , 1987 .

[13]  Frederick W. Boltz,et al.  ORBITAL MOTION UNDER CONTINUOUS TANGENTIAL THRUST , 1992 .

[14]  Gerhard Scheifele,et al.  Linear and Regular Celestial Mechanics: Perturbed Two-body Motion Numerical Methods Canonical Theory , 1971 .

[15]  Victor R. Bond,et al.  Modern Astrodynamics: Fundamentals and Perturbation Methods , 1996 .

[16]  D. D. Mueller,et al.  Fundamentals of Astrodynamics , 1971 .

[17]  T. Fukushima Numerical Comparison of Two-Body Regularizations , 2007 .

[18]  C. Burdet Le mouvement Keplerien et les oscillateurs harmoniques. , 1969 .