Magnetic optimization in a multicellular magnetotactic organism.

Unicellular magnetotactic prokaryotes, which typically carry a natural remanent magnetic moment equal to the saturation magnetic moment, are the prime example of magnetically optimized organisms. We here report magnetic measurements on a multicellular magnetotactic prokaryote (MMP) consisting of 17 undifferentiated cells (mean from 148 MMPs) with chains of ferrimagnetic particles in each cell. To test if the chain polarities of each cell contribute coherently to the total magnetic moment of the MMP, we used a highly sensitive magnetization measurement technique (1 fAm(2)) that enabled us to determine the degree of magnetic optimization (DMO) of individual MMPs in vivo. We obtained DMO values consistently above 80%. Numerical modeling shows that the probability of reaching a DMO > 80% would be as low as 0.017 for 17 randomly oriented magnetic dipoles. We simulated different scenarios to test whether high DMOs are attainable by aggregation or self-organization of individual magnetic cells. None of the scenarios investigated is likely to yield consistently high DMOs in each generation of MMPs. The observed high DMO values require strong Darwinian selection and a sophisticated reproduction mechanism. We suggest a multicellular life cycle as the most plausible scenario for transmitting the high DMO from one generation to the next.

[1]  R. Frankel,et al.  Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field , 1995 .

[2]  D. Kaiser,et al.  Building a multicellular organism. , 2001, Annual review of genetics.

[3]  M. Farina,et al.  Organization of cells in magnetotactic multicellular aggregates , 1999 .

[4]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[5]  M. Winklhofer,et al.  Pulsed-field-remanence measurements on individual magnetotactic bacteria , 2002 .

[6]  J. Kirschvink,et al.  South-Seeking Magnetic Bacteria: Short Communications , 1980 .

[7]  R. Frankel,et al.  Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. , 1998, Science.

[8]  R. Frankel,et al.  Hydrodynamic Forces and Band Formation in Swimming Magnetotactic Bacteria , 1988 .

[9]  M. Carlile,et al.  Zoned migration of magnetotactic bacteria , 1987 .

[10]  Grant J. Jensen,et al.  Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK , 2006, Science.

[11]  R. Frankel,et al.  Magnetic Microstructure of Bacterial Magnetite by Electron Holography , 2001 .

[12]  A. Spormann Unusual swimming behavior of a magnetotactic bacterium , 1987 .

[13]  R. Frankel,et al.  Magnetosome formation in prokaryotes , 2004, Nature Reviews Microbiology.

[14]  Alfred M. Spormann,et al.  Chemotactic, magnetotactic and tactile behaviour in a magnetic spirillum , 1984 .

[15]  H. L. Barros,et al.  Study of the motion of magnetotactic bacteria , 1995, European Biophysics Journal.

[16]  A. Tornheim,et al.  Observation of magnetoreceptive behavior in a multicellular magnetotactic prokaryote in higher than geomagnetic fields. , 2005, Biophysical journal.

[17]  Joseph L. Kirschvink,et al.  South-Seeking Magnetic Bacteria , 1980 .

[18]  R. Frankel,et al.  Crystal-size distributions and possible biogenic origin of Fe sulfides , 2001 .

[19]  M. Schoonen,et al.  Magnetic properties of hydrothermally synthesized greigite (Fe3S4)—I. Rock magnetic parameters at room temperature , 1996 .

[20]  Alfonso F Davila,et al.  Magnetic pulse affects a putative magnetoreceptor mechanism. , 2005, Biophysical journal.

[21]  M. Farina,et al.  Structure, Behavior, Ecology and Diversity of Multicellular Magnetotactic Prokaryotes , 2006 .

[22]  D. Weiss,et al.  Movement of magnetic bacteria in time-varying magnetic fields , 1994, Journal of Fluid Mechanics.

[23]  R. Blakemore,et al.  Magnetotactic bacteria , 1975, Science.

[24]  Marcos Farina,et al.  Magnetic iron-sulphur crystals from a magnetotactic microorganism , 1990, Nature.

[25]  A. Bahaj,et al.  An alternative method for the estimation of the magnetic moment of non-spherical magnetotactic bacteria , 1996 .

[26]  R. Blakemore,et al.  Intercellular structure in a many-celled magnetotactic prokaryote , 1990, Archives of Microbiology.

[27]  Henrique Lins de Barros,et al.  Motion of magnetotactic microorganisms , 1986 .

[28]  Damien Faivre,et al.  An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria , 2006, Nature.

[29]  R. Frankel,et al.  Magnetic guidance of organisms. , 1984, Annual review of biophysics and bioengineering.

[30]  M. Farina,et al.  Multicellular life cycle of magnetotactic prokaryotes. , 2004, FEMS microbiology letters.

[31]  L. Shimkets Intercellular signaling during fruiting-body development of Myxococcus xanthus. , 1999, Annual review of microbiology.

[32]  M. Farina,et al.  Cell organization and ultrastructure of a magnetotactic multicellular organism. , 2004, Journal of structural biology.