GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent micelles.

[1]  G. Gimpl,et al.  Cholesterol-induced conformational changes in the oxytocin receptor. , 2011, The Biochemical journal.

[2]  Ruben Abagyan,et al.  Structure of the human histamine H1 receptor complex with doxepin , 2011, Nature.

[3]  H. Loh,et al.  Cholesterol Regulates μ-Opioid Receptor-Induced β-Arrestin 2 Translocation to Membrane Lipid Rafts , 2011, Molecular Pharmacology.

[4]  R. Stevens,et al.  Structure of an Agonist-Bound Human A2A Adenosine Receptor , 2011, Science.

[5]  N. Wagner,et al.  The morphology and composition of cholesterol-rich micellar nanostructures determine transmembrane protein (GPCR) activity. , 2011, Biophysical journal.

[6]  Christopher G. Tate,et al.  The structural basis for agonist and partial agonist action on a β1-adrenergic receptor , 2010, Nature.

[7]  Cheng Zhang,et al.  Structure and Function of an Irreversible Agonist-β2 Adrenoceptor complex , 2010, Nature.

[8]  R. Abagyan,et al.  Structures of the CXCR4 Chemokine GPCR with Small-Molecule and Cyclic Peptide Antagonists , 2010, Science.

[9]  Jonathan A. Javitch,et al.  Structure of the Human Dopamine D3 Receptor in Complex with a D2/D3 Selective Antagonist , 2010, Science.

[10]  C. Sanders,et al.  CHOBIMALT: a cholesterol-based detergent. , 2010, Biochemistry.

[11]  R. Abagyan,et al.  Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. , 2010, Journal of the American Chemical Society.

[12]  R. Stevens,et al.  LCP-Tm: an assay to measure and understand stability of membrane proteins in a membrane environment. , 2010, Biophysical journal.

[13]  Kalle Jonasson,et al.  Prediction of the human membrane proteome , 2010, Proteomics.

[14]  D. Marsh,et al.  Cholesterol-induced fluid membrane domains: a compendium of lipid-raft ternary phase diagrams. , 2009, Biochimica et biophysica acta.

[15]  Paul M. Jenkins,et al.  Differential effect of membrane cholesterol removal on mu- and delta-opioid receptors: a parallel comparison of acute and chronic signaling to adenylyl cyclase. , 2009, The Journal of biological chemistry.

[16]  Robert Fredriksson,et al.  Mapping the human membrane proteome : a majority of the human membrane proteins can be classified according to function and evolutionary origin , 2015 .

[17]  H. Loh,et al.  μ-Opioid Receptor Cell Surface Expression Is Regulated by Its Direct Interaction with Ribophorin I , 2009, Molecular Pharmacology.

[18]  R. Stevens,et al.  The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist , 2008, Science.

[19]  H. Loh,et al.  Agonist-selective signaling is determined by the receptor location within the membrane domains , 2008, Proceedings of the National Academy of Sciences.

[20]  Vadim Cherezov,et al.  A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. , 2008, Structure.

[21]  André Lopez,et al.  Membrane partitioning of various delta-opioid receptor forms before and after agonist activations: the effect of cholesterol. , 2008, Biochimica et biophysica acta.

[22]  R. Stevens,et al.  Microscale fluorescent thermal stability assay for membrane proteins. , 2008, Structure.

[23]  A. López,et al.  Cholesterol content drives distinct pharmacological behaviours of µ-opioid receptor in different microdomains of the CHO plasma membrane , 2008, Molecular membrane biology.

[24]  Structural diversity of G protein-coupled receptors and significance for drug discovery , 2008, Nature Reviews Drug Discovery.

[25]  R. Stevens,et al.  Profiling of membrane protein variants in a baculovirus system by coupling cell-surface detection with small-scale parallel expression. , 2007, Protein expression and purification.

[26]  S. Doniach,et al.  Size and shape of detergent micelles determined by small-angle X-ray scattering. , 2007, The journal of physical chemistry. B.

[27]  Olaf S Andersen,et al.  Bilayer thickness and membrane protein function: an energetic perspective. , 2007, Annual review of biophysics and biomolecular structure.

[28]  W. Xu,et al.  Cholesterol reduction by methyl-beta-cyclodextrin attenuates the delta opioid receptor-mediated signaling in neuronal cells but enhances it in non-neuronal cells. , 2007, Biochemical pharmacology.

[29]  R. Stevens,et al.  High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. , 2007, Science.

[30]  A. Chattopadhyay,et al.  Role of cholesterol in the function and organization of G-protein coupled receptors. , 2006, Progress in lipid research.

[31]  Y. Iwasawa,et al.  Identification of a novel spiropiperidine opioid receptor-like 1 antagonist class by a focused library approach featuring 3D-pharmacophore similarity. , 2006, Journal of medicinal chemistry.

[32]  T. Nagai,et al.  Cholesteryl hemisuccinate as a membrane stabilizer in dipalmitoylphosphatidylcholine liposomes containing saikosaponin-d. , 2005, International journal of pharmaceutics.

[33]  B. Kobilka,et al.  Using synthetic lipids to stabilize purified beta2 adrenoceptor in detergent micelles. , 2005, Analytical biochemistry.

[34]  Axel T Brunger,et al.  Refractive index‐based determination of detergent concentration and its application to the study of membrane proteins , 2005, Protein science : a publication of the Protein Society.

[35]  M. Corbani,et al.  Agonist-independent localization of the NOP receptor in detergent-resistant membrane rafts. , 2004, Biochemical and biophysical research communications.

[36]  A. Milon,et al.  Understanding sterol-membrane interactions, part II: complete 1H and 13C assignments by solid-state NMR spectroscopy and determination of the hydrogen-bonding partners of cholesterol in a lipid bilayer. , 2004, Chemistry.

[37]  Paul Curnow,et al.  Membrane proteins, lipids and detergents: not just a soap opera. , 2004, Biochimica et biophysica acta.

[38]  M. Zuckermann,et al.  What's so special about cholesterol? , 2004, Lipids.

[39]  Jonathan Bard,et al.  Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. , 2004, Analytical biochemistry.

[40]  A. Hansen,et al.  Regulation of Sodium Channel Function by Bilayer Elasticity , 2004, The Journal of general physiology.

[41]  O. Civelli,et al.  Orphan G protein‐coupled receptors: targets for new therapeutic interventions , 2004, Annals of medicine.

[42]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[43]  A. Hopkins,et al.  The druggable genome , 2002, Nature Reviews Drug Discovery.

[44]  G. Gimpl,et al.  Cholesterol as stabilizer of the oxytocin receptor. , 2002, Biochimica et biophysica acta.

[45]  D. C. Mitchell,et al.  Manipulation of cholesterol levels in rod disk membranes by methyl-beta-cyclodextrin: effects on receptor activation. , 2002, The Journal of biological chemistry.

[46]  T. McIntosh,et al.  Structure, composition, and peptide binding properties of detergent soluble bilayers and detergent resistant rafts. , 2002, Biophysical journal.

[47]  R. Grisshammer,et al.  Purification and characterization of the human adenosine A2a receptor functionally expressed in Escherichia coli , 2002 .

[48]  R. Grisshammer,et al.  Purification and characterization of the human adenosine A(2a) receptor functionally expressed in Escherichia coli. , 2002, European journal of biochemistry.

[49]  R. Leventis,et al.  Partitioning of lipidated peptide sequences into liquid-ordered lipid domains in model and biological membranes. , 2001, Biochemistry.

[50]  A. Chattopadhyay,et al.  Cholesterol organization in membranes at low concentrations: effects of curvature stress and membrane thickness. , 2001, Biophysical journal.

[51]  T. Haines,et al.  Do sterols reduce proton and sodium leaks through lipid bilayers? , 2001, Progress in lipid research.

[52]  Joseph D. Kwasnoski,et al.  High-density miniaturized thermal shift assays as a general strategy for drug discovery. , 2001, Journal of biomolecular screening.

[53]  J. Masson,et al.  Role of Sterols in Modulating the Human μ-Opioid Receptor Function in Saccharomyces cerevisiae * , 2000, The Journal of Biological Chemistry.

[54]  Deborah A. Brown,et al.  Lipid-dependent Targeting of G Proteins into Rafts* , 2000, The Journal of Biological Chemistry.

[55]  P. Emmerson,et al.  Membrane Microviscosity Modulates μ‐Opioid Receptor Conformational Transitions and Agonist Efficacy , 1999, Journal of neurochemistry.

[56]  K S Wilson,et al.  Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3. , 1998, Journal of molecular biology.

[57]  I. Rico-Lattes,et al.  Anomeric effects on the structure of micelles of alkyl maltosides in water , 1997 .

[58]  R. Cantor Lateral Pressures in Cell Membranes: A Mechanism for Modulation of Protein Function , 1997 .

[59]  J. Ballesteros,et al.  Analysis and refinement of criteria for predicting the structure and relative orientations of transmembranal helical domains. , 1992, Biophysical journal.

[60]  P. Yeagle Modulation of membrane function by cholesterol. , 1991, Biochimie.

[61]  M. Straume,et al.  Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. , 1990, Biochemistry.

[62]  S. Ferguson-Miller,et al.  Alkyl glycoside detergents: synthesis and applications to the study of membrane proteins. , 1986, Methods in enzymology.

[63]  S. Gruner Intrinsic curvature hypothesis for biomembrane lipid composition: a role for nonbilayer lipids. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[64]  E. London,et al.  Fluorimetric determination of critical micelle concentration avoiding interference from detergent charge. , 1984, Analytical biochemistry.

[65]  A. D. Smith,et al.  The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. , 1984, Biochimica et biophysica acta.

[66]  P. Attwood,et al.  The application of pressure relaxation to the study of the equilibrium between metarhodopsin I and II from bovine retinas , 1980, FEBS letters.