Input-output specific orchestration of aversive valence in lateral habenula during stress dynamics

Stress has been considered as a major risk factor for depressive disorders, triggering depression onset via inducing persistent dysfunctions in specialized brain regions and neural circuits. Among various regions across the brain, the lateral habenula (LHb) serves as a critical hub for processing aversive information during the dynamic process of stress accumulation, thus having been implicated in the pathogenesis of depression. LHb neurons integrate aversive valence conveyed by distinct upstream inputs, many of which selectively innervate the medial part (LHbM) or lateral part (LHbL) of LHb. LHb subregions also separately assign aversive valence via dissociable projections to the downstream targets in the midbrain which provides feedback loops. Despite these strides, the spatiotemporal dynamics of LHb-centric neural circuits remain elusive during the progression of depression-like state under stress. In this review, we attempt to describe a framework in which LHb orchestrates aversive valence via the input-output specific neuronal architecture. Notably, a physiological form of Hebbian plasticity in LHb under multiple stressors has been unveiled to incubate neuronal hyperactivity in an input-specific manner, which causally encodes chronic stress experience and drives depression onset. Collectively, the recent progress and future efforts in elucidating LHb circuits shed light on early interventions and circuit-specific antidepressant therapies.

[1]  Y. Zhang,et al.  The thalamic reticular nucleus-lateral habenula circuit regulates depressive-like behaviors in chronic stress and chronic pain. , 2023, Cell reports.

[2]  Gregory H. Canal,et al.  Cingulate dynamics track depression recovery with deep brain stimulation , 2023, Nature.

[3]  C. Ip,et al.  Critical role of lateral habenula circuits in the control of stress-induced palatable food consumption , 2023, Neuron.

[4]  Dongmin Lee,et al.  Neural mechanism of acute stress regulation by trace aminergic signalling in the lateral habenula in male mice , 2023, Nature communications.

[5]  R. Cunha,et al.  Lateral septum adenosine A2A receptors control stress-induced depressive-like behaviors via signaling to the hypothalamus and habenula , 2023, Nature Communications.

[6]  Nadine Gogolla,et al.  Neural Circuits for Emotion. , 2023, Annual review of neuroscience.

[7]  Zhiyan Wang,et al.  Deep brain stimulation in the lateral habenula reverses local neuronal hyperactivity and ameliorates depression-like behaviors in rats , 2023, Neurobiology of Disease.

[8]  E. Delpire,et al.  Opposing retrograde and astrocyte-dependent endocannabinoid signaling mechanisms regulate lateral habenula synaptic transmission , 2023, Cell reports.

[9]  C. Bellone,et al.  A neural substrate for negative affect dictates female parental behavior , 2023, Neuron.

[10]  M. Carlén,et al.  Esr1+ hypothalamic-habenula neurons shape aversive states , 2022, bioRxiv.

[11]  William E. Allen,et al.  Cell-type-specific population dynamics of diverse reward computations , 2022, Cell.

[12]  Kenji F. Tanaka,et al.  Lateral habenula glutamatergic neurons projecting to the dorsal raphe nucleus promote aggressive arousal in mice , 2022, Nature Communications.

[13]  C. Liston,et al.  Synaptic Mechanisms Regulating Mood State Transitions in Depression. , 2022, Annual review of neuroscience.

[14]  V. Voon,et al.  Bilateral Habenula deep brain stimulation for treatment-resistant depression: clinical findings and electrophysiological features , 2022, Translational Psychiatry.

[15]  W. Xiong,et al.  The ATP Level in the Medial Prefrontal Cortex Regulates Depressive-like Behavior via the Medial Prefrontal Cortex-Lateral Habenula Pathway , 2022, Biological Psychiatry.

[16]  Peng Liu,et al.  Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset , 2022, Neuron.

[17]  P. Kenny,et al.  Networks of habenula-projecting cortical neurons regulate cocaine seeking , 2021, Science advances.

[18]  A. Schatzberg,et al.  Stanford Neuromodulation Therapy (SNT): A Double-Blind Randomized Controlled Trial. , 2021, The American journal of psychiatry.

[19]  Andreas R. Pfenning,et al.  Population-specific neuromodulation prolongs therapeutic benefits of deep brain stimulation , 2021, Science.

[20]  Lief E. Fenno,et al.  Transcriptional and functional divergence in lateral hypothalamic glutamate neurons projecting to the lateral habenula and ventral tegmental area , 2021, Neuron.

[21]  Luming Li,et al.  Case Report: Lateral Habenula Deep Brain Stimulation for Treatment-Resistant Depression , 2021, Frontiers in Psychiatry.

[22]  David J. Barker,et al.  Distinct Signaling by Ventral Tegmental Area Glutamate, GABA, and Combinatorial Glutamate-GABA Neurons in Motivated Behavior , 2020, Cell reports.

[23]  H. Mayberg,et al.  Rapid Antidepressant Effects of Deep Brain Stimulation and Their Relation to Surgical Protocol , 2020, Biological Psychiatry.

[24]  Hailan Hu,et al.  Circuits and functions of the lateral habenula in health and in disease , 2020, Nature Reviews Neuroscience.

[25]  K. Sudheimer,et al.  Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. , 2020, The American journal of psychiatry.

[26]  Qing Xu,et al.  Blunted diurnal firing in lateral habenula projections to dorsal raphe nucleus and delayed photoentrainment in stress-susceptible mice , 2020, bioRxiv.

[27]  J. Kauer,et al.  Periaqueductal Gray and Rostromedial Tegmental Inhibitory Afferents to VTA Have Distinct Synaptic Plasticity and Opiate Sensitivity , 2020, Neuron.

[28]  J. Neumaier,et al.  Chemogenetic inhibition of lateral habenula projections to the dorsal raphe nucleus reduces passive coping and perseverative reward seeking in rats , 2020, Neuropsychopharmacology.

[29]  Bo Li,et al.  Opposing Contributions of GABAergic and Glutamatergic Ventral Pallidal Neurons to Motivational Behaviors , 2020, Neuron.

[30]  S. J. Shammah-Lagnado,et al.  Habenular connections with the dopaminergic and serotonergic system and their role in stress‐related psychiatric disorders , 2019, The European journal of neuroscience.

[31]  S. Lammel,et al.  Chronic Stress Induces Activity, Synaptic, and Transcriptional Remodeling of the Lateral Habenula Associated with Deficits in Motivated Behaviors , 2019, Neuron.

[32]  T. Jhou,et al.  Three Rostromedial Tegmental Afferents Drive Triply Dissociable Aspects of Punishment Learning and Aversive Valence Encoding , 2019, Neuron.

[33]  T. Freund,et al.  Median raphe controls acquisition of negative experience in the mouse , 2019, Science.

[34]  G. Stuber,et al.  Transcriptional and Spatial Resolution of Cell Types in the Mammalian Habenula , 2019, Neuron.

[35]  Han Xu,et al.  A neural circuit for comorbid depressive symptoms in chronic pain , 2019, Nature Neuroscience.

[36]  R. Malinow,et al.  Stress transforms lateral habenula reward responses into punishment signals , 2019, Proceedings of the National Academy of Sciences.

[37]  Talia N. Lerner,et al.  Neuronal Dynamics Regulating Brain and Behavioral State Transitions , 2019, Cell.

[38]  M. Pu,et al.  A Visual Circuit Related to Habenula Underlies the Antidepressive Effects of Light Therapy , 2019, Neuron.

[39]  F. Ferraguti,et al.  Punishment-Predictive Cues Guide Avoidance through Potentiation of Hypothalamus-to-Habenula Synapses , 2019, Neuron.

[40]  Hailan Hu,et al.  Lateral Habenular Burst Firing as a Target of the Rapid Antidepressant Effects of Ketamine , 2019, Trends in Neurosciences.

[41]  Lief E. Fenno,et al.  A hypothalamus-habenula circuit controls aversion , 2019, Molecular Psychiatry.

[42]  Li I. Zhang,et al.  Transforming Sensory Cues into Aversive Emotion via Septal-Habenular Pathway , 2018, Neuron.

[43]  Alexxai V. Kravitz,et al.  Glutamatergic Ventral Pallidal Neurons Modulate Activity of the Habenula–Tegmental Circuitry and Constrain Reward Seeking , 2018, Biological Psychiatry.

[44]  Christophe D. Proulx,et al.  A neural pathway controlling motivation to exert effort , 2018, Proceedings of the National Academy of Sciences.

[45]  A. Schatzberg,et al.  High-dose spaced theta-burst TMS as a rapid-acting antidepressant in highly refractory depression. , 2018, Brain : a journal of neurology.

[46]  T. Hnasko,et al.  Opponent control of behavioral reinforcement by inhibitory and excitatory projections from the ventral pallidum , 2018, Nature Communications.

[47]  Fang Wang,et al.  Dorsal raphe projection inhibits the excitatory inputs on lateral habenula and alleviates depressive behaviors in rats , 2018, Brain Structure and Function.

[48]  Hailan Hu,et al.  Ketamine blocks bursting in the lateral habenula to rapidly relieve depression , 2018, Nature.

[49]  Hailan Hu,et al.  Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression , 2018, Nature.

[50]  Anirvan Ghosh,et al.  Identification of a Corticohabenular Circuit Regulating Socially Directed Behavior , 2017, Biological Psychiatry.

[51]  David J. Barker,et al.  Lateral Preoptic Control of the Lateral Habenula through Convergent Glutamate and GABA Transmission. , 2017, Cell reports.

[52]  D. H. Root,et al.  Review of the cytology and connections of the lateral habenula, an avatar of adaptive behaving , 2017, Pharmacology Biochemistry and Behavior.

[53]  B. Lim,et al.  Distinct Ventral Pallidal Neural Populations Mediate Separate Symptoms of Depression , 2017, Cell.

[54]  T. Jhou,et al.  Learning From One’s Mistakes: A Dual Role for the Rostromedial Tegmental Nucleus in the Encoding and Expression of Punished Reward Seeking , 2017, Biological Psychiatry.

[55]  P. Greengard,et al.  Elevation of p11 in lateral habenula mediates depression-like behavior , 2017, Molecular Psychiatry.

[56]  Alexander B. Johnson,et al.  Ventral tegmental area glutamate neurons co-release GABA and promote positive reinforcement , 2016, Nature Communications.

[57]  Bo Li,et al.  A basal ganglia circuit for evaluating action outcomes , 2016, Nature.

[58]  F. Meye,et al.  Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse , 2016, Nature Neuroscience.

[59]  Alexander B. Johnson,et al.  Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area. , 2016, Cell reports.

[60]  R. Luján,et al.  Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice , 2016, Nature Medicine.

[61]  S. Duan,et al.  Laterodorsal tegmentum interneuron subtypes oppositely regulate olfactory cue-induced innate fear , 2016, Nature Neuroscience.

[62]  Carla Nasca,et al.  Mechanisms of stress in the brain , 2015, Nature Neuroscience.

[63]  Naoshige Uchida,et al.  Habenula Lesions Reveal that Multiple Mechanisms Underlie Dopamine Prediction Errors , 2015, Neuron.

[64]  Liqun Luo,et al.  Diversity of Transgenic Mouse Models for Selective Targeting of Midbrain Dopamine Neurons , 2015, Neuron.

[65]  S. Higashijima,et al.  The Habenulo-Raphe Serotonergic Circuit Encodes an Aversive Expectation Value Essential for Adaptive Active Avoidance of Danger , 2014, Neuron.

[66]  D. H. Root,et al.  Single rodent mesohabenular axons release glutamate and GABA , 2014, Nature Neuroscience.

[67]  Christophe D. Proulx,et al.  Reward processing by the lateral habenula in normal and depressive behaviors , 2014, Nature Neuroscience.

[68]  M. Metzger,et al.  Lateral habenula and the rostromedial tegmental nucleus innervate neurochemically distinct subdivisions of the dorsal raphe nucleus in the rat , 2014, The Journal of comparative neurology.

[69]  Karl Deisseroth,et al.  A Unique Population of Ventral Tegmental Area Neurons Inhibits the Lateral Habenula to Promote Reward , 2013, Neuron.

[70]  R. Malinow,et al.  βCaMKII in Lateral Habenula Mediates Core Symptoms of Depression , 2013, Science.

[71]  Scott J. Russo,et al.  The brain reward circuitry in mood disorders , 2013, Nature Reviews Neuroscience.

[72]  H. Okamoto,et al.  Molecular characterization of the subnuclei in rat habenula , 2012, The Journal of comparative neurology.

[73]  K. Deisseroth,et al.  A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge , 2012, Nature.

[74]  R. Buckner,et al.  Efficacy of Transcranial Magnetic Stimulation Targets for Depression Is Related to Intrinsic Functional Connectivity with the Subgenual Cingulate , 2012, Biological Psychiatry.

[75]  K. Deisseroth,et al.  Input-specific control of reward and aversion in the ventral tegmental area , 2012, Nature.

[76]  R. Veh,et al.  Individual neurons in the rat lateral habenular complex project mostly to the dopaminergic ventral tegmental area or to the serotonergic raphe nuclei , 2012, The Journal of comparative neurology.

[77]  Alice M Stamatakis,et al.  Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance , 2012, Nature Neuroscience.

[78]  Christophe D. Proulx,et al.  Input to the Lateral Habenula from the Basal Ganglia Is Excitatory, Aversive, and Suppressed by Serotonin , 2012, Neuron.

[79]  M. Metzger,et al.  Differential projections from the lateral habenula to the rostromedial tegmental nucleus and ventral tegmental area in the rat , 2012, The Journal of comparative neurology.

[80]  S. Grillner,et al.  Evolutionary conservation of the habenular nuclei and their circuitry controlling the dopamine and 5-hydroxytryptophan (5-HT) systems , 2011, Proceedings of the National Academy of Sciences.

[81]  R. Veh,et al.  Morphological and electrophysiological characteristics of neurons within identified subnuclei of the lateral habenula in rat brain slices , 2011, Neuroscience.

[82]  Christophe D. Proulx,et al.  Synaptic potentiation onto habenula neurons in learned helplessness model of depression , 2010, Nature.

[83]  O. Hikosaka The habenula: from stress evasion to value-based decision-making , 2010, Nature Reviews Neuroscience.

[84]  Peter Kirsch,et al.  Remission of Major Depression Under Deep Brain Stimulation of the Lateral Habenula in a Therapy-Refractory Patient , 2010, Biological Psychiatry.

[85]  S. Sesack,et al.  Lateral habenula projections to dopamine and GABA neurons in the rat ventral tegmental area , 2009, The European journal of neuroscience.

[86]  T. Jhou,et al.  The mesopontine rostromedial tegmental nucleus: A structure targeted by the lateral habenula that projects to the ventral tegmental area of Tsai and substantia nigra compacta , 2009, The Journal of comparative neurology.

[87]  Mark G. Baxter,et al.  The Rostromedial Tegmental Nucleus (RMTg), a GABAergic Afferent to Midbrain Dopamine Neurons, Encodes Aversive Stimuli and Inhibits Motor Responses , 2009, Neuron.

[88]  Simon Hong,et al.  The Globus Pallidus Sends Reward-Related Signals to the Lateral Habenula , 2008, Neuron.

[89]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[90]  Karl J. Friston,et al.  Covariation of Activity in Habenula and Dorsal Raphé Nuclei Following Tryptophan Depletion , 1999, NeuroImage.

[91]  David Wirtshafter,et al.  Dopamine agonists and stress produce different patterns of Fos-like immunoreactivity in the lateral habenula , 1994, Brain Research.

[92]  W. Nauta,et al.  Efferent connections of the habenular nuclei in the rat , 1979, The Journal of comparative neurology.

[93]  W. Nauta,et al.  Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber‐of‐passage problem , 1977, The Journal of comparative neurology.

[94]  Hailan Hu,et al.  Decoding Depression: Insights from Glial and Ketamine Regulation of Neuronal Burst Firing in Lateral Habenula. , 2019, Cold Spring Harbor symposia on quantitative biology.

[95]  Yan-Gang Sun,et al.  Organization of Functional Long-Range Circuits Controlling the Activity of Serotonergic Neurons in the Dorsal Raphe Nucleus. , 2017, Cell reports.

[96]  Julie A. Harris,et al.  Efferent Pathways of the Mouse Lateral Habenula , 2015, The Journal of comparative neurology.

[97]  O. Hikosaka,et al.  Representation of negative motivational value in the primate lateral habenula , 2009, Nature Neuroscience.

[98]  M. Gutnick,et al.  Electrophysiological properties of neurons in the lateral habenula nucleus: an in vitro study. , 1988, Journal of neurophysiology.