Low-potential sodium insertion in a NASICON-type structure through the Ti(III)/Ti(II) redox couple.

We report the direct synthesis of powder Na3Ti2(PO4)3 together with its low-potential electrochemical performance and crystal structure elucidation for the reduced and oxidized phases. First-principles calculations at the density functional theory level have been performed to gain further insight into the electrochemistry of Ti(IV)/Ti(III) and Ti(III)/Ti(II) redox couples in these sodium superionic conductor (NASICON) compounds. Finally, we have validated the concept of full-titanium-based sodium ion cells through the assembly of symmetric cells involving Na3Ti2(PO4)3 as both positive and negative electrode materials operating at an average potential of 1.7 V.

[1]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[2]  Kazuma Gotoh,et al.  Electrochemical Na Insertion and Solid Electrolyte Interphase for Hard‐Carbon Electrodes and Application to Na‐Ion Batteries , 2011 .

[3]  C. Masquelier,et al.  α-Na3M2(PO4)3 (M = Ti, Fe): absolute cationic ordering in NASICON-type phases. , 2011, Journal of the American Chemical Society.

[4]  Jeff Dahn,et al.  Lithium‐Ion Cells with Aqueous Electrolytes , 1995 .

[5]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[6]  Eiji Kobayashi,et al.  Performance of NASICON Symmetric Cell with Ionic Liquid Electrolyte , 2010 .

[7]  M. Doeff,et al.  Thin Film Solid State Sodium Batteries for Electric Vehicles , 1995 .

[8]  J. Yamaki,et al.  Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte , 2010 .

[9]  P. Hagenmuller,et al.  A nasicon-type phase as intercalation electrode: NaTi2(PO4)3 , 1987 .

[10]  D. Stevens,et al.  The Mechanisms of Lithium and Sodium Insertion in Carbon Materials , 2001 .

[11]  C. Delmas,et al.  On the structure of Li3Ti2(PO4)3 , 2002 .

[12]  S. C. Parker,et al.  Lithium Insertion and Transport in the TiO2-B Anode Material: A Computational Study , 2009 .

[13]  Hajime Arai,et al.  Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds , 1996 .

[14]  M. Stanley Whittingham,et al.  Chemistry of intercalation compounds: Metal guests in chalcogenide hosts , 1978 .

[15]  John B. Goodenough,et al.  Mapping of Transition Metal Redox Energies in Phosphates with NASICON Structure by Lithium Intercalation , 1997 .

[16]  Donghan Kim,et al.  Enabling Sodium Batteries Using Lithium‐Substituted Sodium Layered Transition Metal Oxide Cathodes , 2011 .

[17]  H. L. Hartley,et al.  Manuscript Preparation , 2022 .

[18]  L. Nazar,et al.  A Powder Neutron Diffraction Investigation of the Two Rhombohedral NASICON Analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3 , 2000 .

[19]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[20]  C. Delmas,et al.  Relationships between structure and magnetic properties of titanium(III) nasicon-type phosphates , 1988 .

[21]  J. Goodenough,et al.  Access to M3 + / M2 + Redox Couples in Layered LiMS2 Sulfides ( M = Ti , V , Cr ) as Anodes for Li-Ion Battery , 2009 .

[22]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[23]  D. Stevens,et al.  An In Situ Small‐Angle X‐Ray Scattering Study of Sodium Insertion into a Nanoporous Carbon Anode Material within an Operating Electrochemical Cell , 2000 .

[24]  Gerbrand Ceder,et al.  Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides , 1997 .

[25]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[26]  Anubhav Jain,et al.  Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials , 2011 .

[27]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[28]  J. Tarascon,et al.  Li Metal‐Free Rechargeable LiMn2 O 4 / Carbon Cells: Their Understanding and Optimization , 1992 .

[29]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[30]  K. Abraham Intercalation positive electrodes for rechargeable sodium cells , 1982 .

[31]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[32]  Gavin Vaughan,et al.  In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials , 2002 .

[33]  Gerbrand Ceder,et al.  Experimental and Computational Study of the Structure and Electrochemical Properties of LixM2(PO4)3 Compounds with the Monoclinic and Rhombohedral Structure , 2002 .

[34]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[35]  F. Hatert Na4Fe2+Fe3+(PO4)3, a new synthetic NASICON-type phosphate , 2009, Acta crystallographica. Section E, Structure reports online.

[36]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[37]  A. Goñi,et al.  High capacity hard carbon anodes for sodium ion batteries in additive free electrolyte , 2013 .

[38]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[39]  Anton Van der Ven,et al.  Thermodynamics of Lithium in TiO2(B) from First Principles , 2012 .

[40]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[41]  Teófilo Rojo,et al.  Na-ion batteries, recent advances and present challenges to become low cost energy storage systems , 2012 .