Polynomial-time algorithm for computing bound sets

An algorithm for computing bound sets of a Boolean function on its circuit representation is presented. The identification of bound sets is useful for many applications in logic synthesis, formal verification and testing. The presented algorithm computes bound sets by analysing dominator relations of the circuit. It has O(e·log n) worst-case complexity, where e is the number of edges and n is the number of vertices of the circuit graph. The experimental results show that the algorithm is efficient for large functions and allows computing bound sets for cases that were not possible to handle with previous methods.

[1]  Shih-Chieh Chang,et al.  Technology mapping for TLU FPGAs based on decomposition of binary decision diagrams , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[2]  W. Ackermann Zum Hilbertschen Aufbau der reellen Zahlen , 1928 .

[3]  Valeria Bertacco,et al.  The disjunctive decomposition of logic functions , 1997, ICCAD 1997.

[4]  A. Thayse A FAST ALGORITHM FOR THE PROPER DECOMPOSITION OF BOOLEAN FUNCTIONS , 1972 .

[5]  Giovanni De Micheli,et al.  Finding all simple disjunctive decompositions using irredundant sum-of-products forms , 1998, ICCAD '98.

[6]  H. A. Curtis,et al.  A new approach to The design of switching circuits , 1962 .

[7]  Robert E. Tarjan,et al.  A fast algorithm for finding dominators in a flowgraph , 1979, TOPL.

[8]  Edward S. Lowry,et al.  Object code optimization , 1969, CACM.

[9]  Tsutomu Sasao,et al.  FPGA Design by Generalized Functional Decomposition , 1993 .

[10]  L. Billera On the composition and decomposition of clutters , 1971 .

[11]  K. Karplus Using if-then-else DAGs for multi-level logic minimization , 1989 .

[12]  Peter Weiner,et al.  A Fast Algorithm for the Disjunctive Decomposition of Switching Functions , 1971, IEEE Transactions on Computers.

[13]  Maciej J. Ciesielski,et al.  BDS: a BDD-based logic optimization system , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Massoud Pedram,et al.  OBDD-based function decomposition: algorithms and implementation , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[15]  Carl Sechen,et al.  Quasi-algebraic decompositions of switching functions , 1995, Proceedings Sixteenth Conference on Advanced Research in VLSI.

[16]  Richard M. Karp,et al.  Minimization Over Boolean Graphs , 1962, IBM J. Res. Dev..