Numerical Approximation of Large Contrast Problems with the Unfitted Nitsche Method

These notes are concerned with the numerical treatment of the coupling between second order elliptic problems that feature large contrast between their characteristic coefficients. In particular, we study the application of Nitsche’s method to set up a robust approximation of interface conditions in the framework of the finite element method. The notes are subdivided in three parts. Firstly, we review the weak enforcement of Dirichlet boundary conditions with particular attention to Nitsche’s method and we discuss the extension of such technique to the coupling of Poisson equations. Secondly, we review the application of Nitsche’s method to large contrast problems, discretised on computational meshes that capture the interface of discontinuity between coefficients. Finally, we extend the previous schemes to the case of unfitted meshes, which occurs when the computational mesh does not conform with the interface between subproblems.

[1]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[4]  Erik Burman,et al.  A Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems , 2006, SIAM J. Numer. Anal..

[5]  Juhani Pitkäranta,et al.  The finite element method with Lagrange multipliers for domains with corners , 1981 .

[6]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[7]  I. Babuska The Finite Element Method with Penalty , 1973 .

[8]  Bertrand Maury Numerical Analysis of a Finite Element/Volume Penalty Method , 2009, SIAM J. Numer. Anal..

[9]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[10]  Helio J. C. Barbosa,et al.  The finite element method with Lagrange multiplier on the boundary: circumventing the Babuscka-Brezzi condition , 1991 .

[11]  Miguel A. Fernández,et al.  Continuous Interior Penalty Finite Element Method for Oseen's Equations , 2006, SIAM J. Numer. Anal..

[12]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[13]  Ted Belytschko,et al.  An extended finite element method for modeling crack growth with frictional contact , 2001 .

[14]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[15]  Nicolas Moës,et al.  Imposing Dirichlet boundary conditions in the extended finite element method , 2006 .

[16]  A. Ern,et al.  A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity , 2008 .

[17]  I. Babuska The finite element method with Lagrangian multipliers , 1973 .

[18]  O. Ladyzhenskaya The Boundary Value Problems of Mathematical Physics , 1985 .

[19]  Paolo Zunino,et al.  An unfitted interface penalty method for the numerical approximation of contrast problems , 2011 .

[20]  Mary F. Wheeler,et al.  A Priori Error Estimates for Finite Element Methods Based on Discontinuous Approximation Spaces for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[21]  Helio J. C. Barbosa,et al.  Boundary Lagrange multipliers in finite element methods: Error analysis in natural norms , 1992 .

[22]  M. Dryja On Discontinuous Galerkin Methods for Elliptic Problems with Discontinuous Coefficients , 2003 .

[23]  M. Dryja,et al.  Raytcho Lazarov - 60 , 2003 .

[24]  Paolo Zunino Discontinuous Galerkin Methods Based on Weighted Interior Penalties for Second Order PDEs with Non-smooth Coefficients , 2009, J. Sci. Comput..

[25]  Alfio Quarteroni,et al.  On the coupling of hyperbolic and parabolic systems: analytical and numerical approach , 1988 .

[26]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[27]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[28]  Juhani Pitkäranta,et al.  Local stability conditions for the Babuška method of Lagrange multipliers , 1980 .

[29]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[30]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[31]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[32]  Maksymilian Dryja On discontinuos Galerkin methods for elliptic problems with discontinuous coefficints , 2003 .

[33]  Peter Hansbo,et al.  Nitsche's method for interface problems in computa‐tional mechanics , 2005 .

[34]  Arnold Reusken,et al.  An extended pressure finite element space for two-phase incompressible flows with surface tension , 2007, J. Comput. Phys..

[35]  R. Glowinski,et al.  Error analysis of a fictitious domain method applied to a Dirichlet problem , 1995 .

[36]  A. Reusken Analysis of an extended pressure finite element space for two-phase incompressible flows , 2008 .

[37]  Isaac Harari,et al.  Analysis of an efficient finite element method for embedded interface problems , 2010 .

[38]  Erik Burman,et al.  A Unified Analysis for Conforming and Nonconforming Stabilized Finite Element Methods Using Interior Penalty , 2005, SIAM J. Numer. Anal..

[39]  John W. Barrett,et al.  Finite element approximation of the Dirichlet problem using the boundary penalty method , 1986 .

[40]  Isaac Harari,et al.  An efficient finite element method for embedded interface problems , 2009 .

[41]  Alexandre Ern,et al.  Continuous interior penalty hp-finite element methods for advection and advection-diffusion equations , 2007, Math. Comput..

[42]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[43]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[44]  Juhani Pitkäranta,et al.  Boundary subspaces for the finite element method with Lagrange multipliers , 1979 .

[45]  James H. Bramble,et al.  The Lagrange multiplier method for Dirichlet’s problem , 1981 .

[46]  Paolo Zunino,et al.  A Finite Element Method Based on Weighted Interior Penalties for Heterogeneous Incompressible Flows , 2009, SIAM J. Numer. Anal..

[47]  Ramon Codina,et al.  Approximate imposition of boundary conditions in immersed boundary methods , 2009 .