On the Fiber Characters of $\mathbb F^*_{p^m}$ and related Polynomial Algebras

Let p be a prime, m be a positive integer ( m ≥ 1, and m ≥ 2 if p = 2), and χn be a multiplicative complex character on F∗ p with order n|(p−1). We show that a partition A1∪A2∪· · ·∪An of F∗pm is the partition by fibers of χn if and only if these fibers satisfy certain additive properties. This is equivalent to showing that the set of multivariate characteristic polynomials of these fibers, completed with the constant polynomial 1, is the basis of an (n + 1)-dimensional commutative algebra with identity in the ring Q[x1, . . . , xn]/〈x p 1 − 1, . . . , x n − 1〉. Mathematics Subject Classification (2000): 11A15, 11N69, 11R32

[1]  J. Neukirch Algebraic Number Theory , 1999 .

[2]  J. Johnsen,et al.  On the distribution of powers in finite fields. , 1971 .

[3]  M. Elia,et al.  Note on an additive characterization of quadratic residues modulo p , 2006 .

[4]  An Additive Characterization of Fibers of Characters on F p , 2009 .

[5]  Wieb Bosma,et al.  Algorithmic Number Theory , 2000, Lecture Notes in Computer Science.

[6]  David Corwin Galois Theory , 2009 .

[7]  Nvmerorvm Congrventia,et al.  Disquisitiones Arithmeticae , 2017 .

[8]  O. Perron,et al.  Bemerkungen über die Verteilung der quadratischen Reste , 1952 .

[9]  K. Williams,et al.  Gauss and Jacobi sums , 2021, Mathematical Surveys and Monographs.

[10]  ON A PROBLEM OF PERRON , 2019, JP Journal of Algebra, Number Theory and Applications.

[11]  W. B.,et al.  Algebras and their Arithmetics , 1924, Nature.

[12]  Pierre Samuel,et al.  Algebraic theory of numbers , 1971 .

[13]  E. T. An Introduction to the Theory of Numbers , 1946, Nature.