The development of a MEMS/NEMS-based 3 D.O.F. compliant micro robot

Microrobots are used nowadays in several fields of application, specially in mini invasive surgery. However, they are rather difficult to be constructed, and the traditional micro machining tools are not adequate yet to built the smaller parts. The construction of the microrobots is even harder if more than one D.O.F. are required for the mechanism, because these systems are more complicated. This paper deals with the development of a 3 D.O.F. planar micro platform with remote system of actuation. The new approach of design and manufacturing is based on two innovative solutions: a) the adoption of the technologies used to built MEMS, Micro Electro Mechanical Systems; b) the introduction of new flexural hinge to develop compliant micro mechanisms. The new concept of flexural hinge is described in the paper, also from a theoretical point of view. Several example of possible structures are proposed and analyzed, together with their remote wire actuation systems. Finite Element Analysis (FEA) has been also adopted to analyze the system performance under small deformations. The principle of fabrication is, then, described. The process consists of a sequence of single steps which have allowed to achieved an overall maximum size down to 3–4 mm and the minimum thickness of the smaller components down to 50µm.