Efficient open domination in graph products

A graph G is an efficient open domination graph if there exists a subset D of V(G) for which the open neighborhoods centered in vertices of D form a partition of V(G). We completely describe efficient open domination graphs among lexicographic, strong, and disjunctive products of graphs. For the Cartesian product we give a characterization when one factor is K2.

[1]  Ghidewon Abay-Asmerom,et al.  Perfect r-Codes in Strong Products of Graphs , 2007 .

[2]  N. Biggs Perfect codes in graphs , 1973 .

[3]  Martin Knor,et al.  Efficient open domination in digraphs , 2011, Australas. J Comb..

[4]  Dewey T. Taylor Perfect r-Codes in Lexicographic Products of Graphs , 2009, Ars Comb..

[5]  Michel Mollard On perfect codes in Cartesian products of graphs , 2011, Eur. J. Comb..

[6]  Sandi Klavzar,et al.  An almost complete description of perfect codes in direct products of cycles , 2006, Adv. Appl. Math..

[7]  Tadeja Kraner Sumenjak,et al.  Partitioning the vertex set of G to make G ☐ H an efficient open domination graph , 2016, Discret. Math. Theor. Comput. Sci..

[8]  Robert Cowen,et al.  Odd neighborhood transversals on grid graphs , 2007, Discret. Math..

[9]  Ramón Beivide,et al.  Perfect Codes for Metrics Induced by Circulant Graphs , 2007, IEEE Transactions on Information Theory.

[10]  Italo J. Dejter Perfect domination in regular grid graphs , 2008, Australas. J Comb..

[11]  Erik Jan van Leeuwen,et al.  Independence and Efficient Domination on P6-free Graphs , 2015, SODA.

[12]  Janez Zerovnik,et al.  Perfect codes in direct products of cycles - a complete characterization , 2008, Adv. Appl. Math..

[13]  W. Imrich,et al.  Handbook of Product Graphs, Second Edition , 2011 .

[14]  Sylvain Gravier,et al.  Total domination number of grid graphs , 2002, Discret. Appl. Math..

[15]  Jun-Ming Xu,et al.  The bondage numbers and efficient dominations of vertex-transitive graphs , 2008, Discret. Math..

[16]  Oliver Schaudt,et al.  Efficient total domination in digraphs , 2012, J. Discrete Algorithms.

[17]  Ghidewon Abay-Asmerom,et al.  Total Perfect Codes in Tensor Products of Graphs , 2008, Ars Comb..

[18]  Fred B. Schneider,et al.  A Theory of Graphs , 1993 .

[19]  Allen J. Schwenk,et al.  Efficient dominating sets in labeled rooted oriented trees , 2005, Discret. Math..

[20]  Caihua Wang,et al.  A Graph Design for Nine Graphs with Six Vertices and Nine Edges , 2012 .

[21]  Alice A. McRae Generalizing NP-completeness proofs for bipartite graphs and chordal graphs , 1995 .

[22]  T. Tamizh Chelvam,et al.  Efficient open domination in Cayley graphs , 2012, Appl. Math. Lett..

[23]  Gasper Mekis Lower bounds for the domination number and the total domination number of direct product graphs , 2010, Discret. Math..

[24]  Sylvain Gravier,et al.  Some results on total domination in direct products of graphs , 2006, Discuss. Math. Graph Theory.

[25]  C. Berge Fractional Graph Theory , 1978 .

[26]  Wayne Goddard,et al.  Vizing's conjecture: a survey and recent results , 2012, J. Graph Theory.

[27]  Anton Cerný,et al.  Efficient domination in directed tori and the Vizing's conjecture for directed graphs , 2009, Ars Comb..

[28]  Sandi Klavzar,et al.  Characterizing r-perfect codes in direct products of two and three cycles , 2005, Inf. Process. Lett..

[29]  P. M. Weichsel THE KRONECKER PRODUCT OF GRAPHS , 1962 .

[31]  Heather Gavlas,et al.  Efficient Open Domination , 2002, Electron. Notes Discret. Math..