Stellar electron-capture rates on nuclei based on a microscopic Skyrme functional

We compute electron-capture rates for $^{54,56}$Fe and Ge isotopes using a self-consistent microscopic approach. The single-nucleon basis and the occupation factors in the target nucleus are calculated in the finite-temperature Skyrme Hartree-Fock model, and the $J^pi = 0^{pm}$, $ 1^{pm}$, $2^{pm}$ charge-exchange transitions are determined in the finitetemperature random-phase approximation (RPA). The scheme is self-consistent; i.e., both the Hartree-Fock and the RPA equations are based on the same Skyrme functional. Several interactions are used in order to provide a theoretical uncertainty on the electron-capture rates for different astrophysical conditions. Comparing electron-capture rates obtained either with different Skyrme sets or with different available models indicates that differences up to one to two orders of magnitude can arise.

[1]  K. Langanke,et al.  Gamow-Teller strength distributions at finite temperatures and electron capture in stellar environments , 2009, 0911.0303.

[2]  W. Fowler,et al.  Stellar weak interaction rates for intermediate-mass nuclei. IV - Interpolation procedures for rapidly varying lepton capture rates using effective log (ft)-values , 1985 .

[3]  Y. Niu,et al.  Stellar electron-capture rates calculated with the finite-temperature relativistic random-phase approximation , 2011, 1104.1683.

[4]  J. Walecka Theoretical Nuclear And Subnuclear Physics , 1995 .

[5]  K. Langanke,et al.  Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range in supernovae environments , 2000, nucl-th/0001018.

[6]  J. Wambach Electron Capture in Stellar Collapse , 1984 .

[7]  S. Goriely,et al.  Skyrme-Hartree-Fock-Bogoliubov nuclear mass formulas: crossing the 0.6 MeV accuracy threshold with microscopically deduced pairing. , 2009, Physical review letters.

[8]  Nuclear weak-interaction processes in stars , 2002, nucl-th/0203071.

[9]  W. Fowler,et al.  Stellar weak interaction rates for intermediate mass nuclei. III. Rate tables for the free nucleons and nuclei with A = 21 TO A = 60 , 1982 .

[10]  G. Martínez-Pinedo,et al.  Theory of core-collapse supernovae , 2006, astro-ph/0612072.

[11]  H. Janka,et al.  Electron capture rates on nuclei and implications for stellar core collapse. , 2003, Physical review letters.

[12]  G. Fuller Neutron shell blocking of electron capture during gravitational collapse , 1982 .

[13]  S. Woosley,et al.  Presupernova collapse models with improved weak-interaction rates. , 2000, Physical review letters.

[14]  T. Kajino,et al.  Evaluation of electron capture reaction rates in Ni isotopes in stellar environments , 2011 .

[15]  D. Vretenar,et al.  Calculation of stellar electron-capture cross sections on nuclei based on microscopic Skyrme functionals , 2009, 0909.3070.

[16]  P. Vogel,et al.  Neutrino–nucleus reactions and nuclear structure , 2003, nucl-th/0311022.

[17]  G. Martínez-Pinedo,et al.  RATE TABLES FOR THE WEAK PROCESSES OF pf-SHELL NUCLEI IN STELLAR ENVIRONMENTS , 2001 .

[18]  H. A. Bethe,et al.  Supernova mechanisms. [SN 1987a] , 1990 .

[19]  C. Toepffer,et al.  Giant resonances on excited states , 1984 .

[20]  G. Martínez-Pinedo,et al.  Competition of Electron Capture and Beta-Decay Rates in Supernova Collapse , 1998, nucl-th/9811095.

[21]  W. Fowler,et al.  Stellar weak-interaction rates for sd-shell nuclei. I - Nuclear matrix element systematics with application to Al-26 and selected nuclei of importance to the supernova problem , 1980 .

[22]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[23]  J. Walecka,et al.  Semileptonic weak interactions with $C^{12}$ , 1972 .

[24]  J. Thomson,et al.  Philosophical Magazine , 1945, Nature.

[25]  S. Levit,et al.  Properties of highly excited nuclei , 1984 .

[26]  R. Schaeffer,et al.  A Skyrme parametrization from subnuclear to neutron star densities , 1997 .

[27]  W. R. Hix,et al.  Improved estimate of electron capture rates on nuclei during stellar core collapse , 2009, 0909.0179.

[28]  King,et al.  Spin-isospin strength distributions for fp shell nuclei: Results for the 55Mn(n,p), 56Fe(n,p), and 58Ni(n,p) reactions at 198 MeV. , 1994, Physical review. C, Nuclear physics.

[29]  T. Skyrme CVII. The nuclear surface , 1956 .

[30]  A. H. Wapstra,et al.  The AME2003 atomic mass evaluation . (II). Tables, graphs and references , 2003 .

[31]  H. Sagawa,et al.  Monopole and dipole compression modes in nuclei , 1981 .

[32]  W. Fowler,et al.  Stellar weak interaction rates for intermediate-mass nuclei. II. A = 21 to A = 60 , 1982 .

[33]  J. Bartel,et al.  Towards a better parametrisation of Skyrme-like effective forces: A critical study of the SkM force , 1982 .