High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation

Abstract In this work we present a FCT- like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial discretization, locally defined solution bounds, element-based flux correction, and non-linear local mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain and understand the behavior of different parts of the method. Convergence tests in space indicate that high-order accuracy is achieved. Numerical results from several benchmarks in two and three dimensions are also reported.

[1]  R. Abgrall,et al.  An Example of High Order Residual Distribution Scheme Using non-Lagrange Elements , 2010, J. Sci. Comput..

[2]  Zhengfu Xu,et al.  High Order Maximum-Principle-Preserving Discontinuous Galerkin Method for Convection-Diffusion Equations , 2014, SIAM J. Sci. Comput..

[3]  Chao Liang,et al.  Parametrized Maximum Principle Preserving Flux Limiters for High Order Schemes Solving Multi-Dimensional Scalar Hyperbolic Conservation Laws , 2014, J. Sci. Comput..

[4]  Stefan Turek,et al.  Flux-corrected transport : principles, algorithms, and applications , 2005 .

[5]  Zhengfu Xu Parametrized maximum principle preserving flux limiters for high order schemes solving hyperbolic conservation laws: one-dimensional scalar problem , 2014, Math. Comput..

[6]  S. Zalesak Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .

[7]  Mikhail Shashkov,et al.  Efficient Algorithm for Local-Bound-Preserving Remapping in ALE Methods , 2004 .

[8]  Yong Yang,et al.  A Second-Order Maximum Principle Preserving Lagrange Finite Element Technique for Nonlinear Scalar Conservation Equations , 2014, SIAM J. Numer. Anal..

[9]  Veselin Dobrev,et al.  Monotonicity in high‐order curvilinear finite element arbitrary Lagrangian–Eulerian remap , 2015 .

[10]  Xiangxiong Zhang,et al.  On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes , 2010, J. Comput. Phys..

[11]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[12]  W. H. Reed,et al.  Triangular mesh methods for the neutron transport equation , 1973 .

[13]  Dmitri Kuzmin,et al.  A parameter-free smoothness indicator for high-resolution finite element schemes , 2013 .

[14]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[15]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[16]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[17]  Yifan Zhang,et al.  Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection-diffusion equations on triangular meshes , 2013, J. Comput. Phys..

[18]  Zhengfu Xu,et al.  High Order Maximum Principle Preserving Finite Volume Method for Convection Dominated Problems , 2016, J. Sci. Comput..

[19]  Dmitri Kuzmin A high‐resolution finite element scheme for convection‐dominated transport , 2000 .

[20]  Xiangxiong Zhang,et al.  Maximum-Principle-Satisfying and Positivity-Preserving High Order Discontinuous Galerkin Schemes for Conservation Laws on Triangular Meshes , 2011, Journal of Scientific Computing.

[21]  S. Osher,et al.  Some results on uniformly high-order accurate essentially nonoscillatory schemes , 1986 .

[22]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[23]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[24]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[25]  Mark Ainsworth,et al.  Bernstein-Bézier Finite Elements of Arbitrary Order and Optimal Assembly Procedures , 2011, SIAM J. Sci. Comput..

[26]  D. Kuzmin,et al.  High-resolution FEM-TVD schemes based on a fully multidimensional flux limiter , 2004 .

[27]  P. Raviart,et al.  On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .

[28]  A. Harten,et al.  Self-adjusting hybrid schemes for shock computations , 1972 .

[29]  Pavel B. Bochev,et al.  Fast optimization-based conservative remap of scalar fields through aggregate mass transfer , 2013, J. Comput. Phys..

[30]  Stefan Turek,et al.  Flux correction tools for finite elements , 2002 .