Bi2S3 Electron Transport Layer Incorporation for High-Performance Heterostructure HgTe Colloidal Quantum Dot Infrared Photodetectors

[1]  Jiang Tang,et al.  Ligand-Engineered HgTe Colloidal Quantum Dot Solids for Infrared Photodetectors. , 2022, Nano letters.

[2]  Jingshan Luo,et al.  Interface Etching Leads to the Inversion of the Conduction Band Offset between the CdS/Sb2Se3 Heterojunction and High-Efficient Sb2Se3 Solar Cells , 2022, ACS Applied Energy Materials.

[3]  P. Guyot-Sionnest,et al.  Thermodynamic Limits to HgTe Quantum Dot Infrared Detector Performance , 2022, Journal of Electronic Materials.

[4]  C. Delerue,et al.  Infrared photoconduction at the diffusion length limit in HgTe nanocrystal arrays , 2021, Nature Communications.

[5]  Ji Won Song,et al.  Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells , 2021 .

[6]  Matthew M. Ackerman,et al.  HgTe colloidal quantum dot photodiodes for extended short-wave infrared detection , 2020, Applied Physics Letters.

[7]  P. Guyot-Sionnest,et al.  Quantum dot solids showing state-resolved band-like transport , 2020, Nature Materials.

[8]  Matthew M. Ackerman,et al.  Direct Imprinting of Quasi‐3D Nanophotonic Structures into Colloidal Quantum‐Dot Devices , 2020, Advanced materials.

[9]  F. P. García de Arquer,et al.  Stable Colloidal Quantum Dot Inks Enable Inkjet-Printed High-Sensitivity Infrared Photodetectors. , 2019, ACS Nano.

[10]  Matthew M. Ackerman,et al.  Colloidal quantum dots for infrared detection beyond silicon , 2019, The Journal of Chemical Physics.

[11]  F. P. García de Arquer,et al.  Nanostructured Back Reflectors for Efficient Colloidal Quantum‐Dot Infrared Optoelectronics , 2019, Advanced materials.

[12]  G. Fang,et al.  Review of Recent Progress in Antimony Chalcogenide‐Based Solar Cells: Materials and Devices , 2019, Solar RRL.

[13]  Jiang Tang,et al.  Quasiepitaxy Strategy for Efficient Full‐Inorganic Sb2S3 Solar Cells , 2019, Advanced Functional Materials.

[14]  Matthew M. Ackerman,et al.  Dual-band infrared imaging using stacked colloidal quantum dot photodiodes , 2019, Nature Photonics.

[15]  Matthew M. Ackerman,et al.  Towards Infrared Electronic Eyes: Flexible Colloidal Quantum Dot Photovoltaic Detectors Enhanced by Resonant Cavity. , 2019, Small.

[16]  M. Silly,et al.  Design of a Unipolar Barrier for a Nanocrystal-Based Short-Wave Infrared Photodiode , 2018, ACS Photonics.

[17]  Matthew M. Ackerman,et al.  Fast and Sensitive Colloidal Quantum Dot Mid-Wave Infrared Photodetectors. , 2018, ACS nano.

[18]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[19]  X. Miao,et al.  Rapid thermal evaporation of Bi2S3 layer for thin film photovoltaics , 2016 .

[20]  P. Guyot-Sionnest,et al.  Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots , 2015 .

[21]  Philippe Guyot-Sionnest,et al.  Mercury telluride colloidal quantum dots: electronic structure, size-dependent spectra, and photocurrent detection up to 12 μm. , 2014, ACS nano.

[22]  M. Burgelman,et al.  Advanced electrical simulation of thin film solar cells , 2013 .

[23]  P. Guyot-Sionnest,et al.  Synthesis of colloidal HgTe quantum dots for narrow mid-IR emission and detection. , 2011, Journal of the American Chemical Society.

[24]  M. Burgelman,et al.  Modelling multivalent defects in thin film solar cells , 2011 .

[25]  A. Rogalski,et al.  Third-generation infrared photodetector arrays , 2009 .

[26]  H. Acharya,et al.  Structural characterization of Bi2−xSbxS3 films prepared by the dip-dry method , 1983 .

[27]  Benjamin J. Leever,et al.  In Situ Characterization of Lifetime and Morphology in Operating Bulk Heterojunction Organic Photovoltaic Devices by Impedance Spectroscopy , 2012 .