Automatic cone photoreceptor segmentation using graph theory and dynamic programming

Geometrical analysis of the photoreceptor mosaic can reveal subclinical ocular pathologies. In this paper, we describe a fully automatic algorithm to identify and segment photoreceptors in adaptive optics ophthalmoscope images of the photoreceptor mosaic. This method is an extension of our previously described closed contour segmentation framework based on graph theory and dynamic programming (GTDP). We validated the performance of the proposed algorithm by comparing it to the state-of-the-art technique on a large data set consisting of over 200,000 cones and posted the results online. We found that the GTDP method achieved a higher detection rate, decreasing the cone miss rate by over a factor of five.

[1]  David Williams,et al.  Optical fiber properties of individual human cones. , 2002, Journal of vision.

[2]  D S Biggs,et al.  Acceleration of iterative image restoration algorithms. , 1997, Applied optics.

[3]  Austin Roorda,et al.  Adaptive optics scanning laser ophthalmoscopy images in a family with the mitochondrial DNA T8993C mutation. , 2009, Investigative ophthalmology & visual science.

[4]  Ashavini M. Pavaskar,et al.  Spatial and temporal variation of rod photoreceptor reflectance in the human retina , 2011, Biomedical optics express.

[5]  Bing Wu,et al.  Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Julia S. Kroisamer,et al.  Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT , 2010, Biomedical optics express.

[7]  David Williams,et al.  Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  D R Williams,et al.  Supernormal vision and high-resolution retinal imaging through adaptive optics. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[9]  T. Hebert,et al.  Adaptive optics scanning laser ophthalmoscopy. , 2002, Optics express.

[10]  Alfredo Dubra,et al.  Registration of 2D Images from Fast Scanning Ophthalmic Instruments , 2010, WBIR.

[11]  A. Tsujikawa,et al.  High-resolution photoreceptor imaging in idiopathic macular telangiectasia type 2 using adaptive optics scanning laser ophthalmoscopy. , 2011, Investigative ophthalmology & visual science.

[12]  Robert J Zawadzki,et al.  Fourier-Domain Optical Coherence Tomography and Adaptive Optics Reveal Nerve Fiber Layer Loss and Photoreceptor Changes in a Patient With Optic Nerve Drusen , 2008, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[13]  Takashi Fujikado,et al.  Detection of photoreceptor disruption by adaptive optics fundus imaging and Fourier-domain optical coherence tomography in eyes with occult macular dystrophy , 2011, Clinical ophthalmology.

[14]  S. Zeger,et al.  Longitudinal data analysis using generalized linear models , 1986 .

[15]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[16]  A. Tsujikawa,et al.  High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy. , 2010, Ophthalmology.

[17]  Steven M. Jones,et al.  Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. , 2005, Optics express.

[18]  David Williams,et al.  In vivo imaging of the photoreceptor mosaic of a rod monochromat , 2008, Vision Research.

[19]  Daniel X Hammer,et al.  Adaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[20]  Xu Liu,et al.  An automated algorithm for photoreceptors counting in adaptive optics retinal images , 2012, Other Conferences.

[21]  Badrinath Roysam,et al.  Light Microscopic Images Reconstructed by Maximum Likelihood Deconvolution , 1995 .

[22]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[23]  A. Dubra,et al.  Subclinical photoreceptor disruption in response to severe head trauma. , 2012, Archives of ophthalmology.

[24]  Daniel X Hammer,et al.  Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  Sina Farsiu,et al.  Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images. , 2012, Investigative ophthalmology & visual science.

[26]  Ravi S. Jonnal,et al.  Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics , 2011, Biomedical optics express.

[27]  Kaccie Y. Li,et al.  Intersubject variability of foveal cone photoreceptor density in relation to eye length. , 2010, Investigative ophthalmology & visual science.

[28]  Toco Y P Chui,et al.  Adaptive-optics imaging of human cone photoreceptor distribution. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[29]  John S Werner,et al.  Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  W. Drexler,et al.  Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. , 2009, Optics express.

[31]  Masanori Hangai,et al.  High-resolution imaging of the photoreceptor layer in epiretinal membrane using adaptive optics scanning laser ophthalmoscopy. , 2011, Ophthalmology.

[32]  Joseph A. Izatt,et al.  Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming , 2012, Biomedical optics express.

[33]  R. Zawadzki,et al.  Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography. , 2008, Optics letters.

[34]  Austin Roorda,et al.  Automated identification of cone photoreceptors in adaptive optics retinal images. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[35]  David Williams,et al.  The arrangement of the three cone classes in the living human eye , 1999, Nature.

[36]  Nicusor Iftimia,et al.  Compact adaptive optics line scanning ophthalmoscope. , 2009, Optics express.

[37]  Donald T. Miller,et al.  Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. , 2005, Optics express.

[38]  Isabelle Bloch,et al.  Automatic Photoreceptor Detection in In-Vivo Adaptive Optics Retinal Images: Statistical Validation , 2012, ICIAR.

[39]  Steven M. Jones,et al.  High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. , 2006, Optics express.

[40]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[41]  Joseph A. Izatt,et al.  Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation , 2010, Optics express.

[42]  Jessica I. Wolfing,et al.  High-resolution retinal imaging of cone-rod dystrophy. , 2006, Ophthalmology.

[43]  C. Dainty,et al.  Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. , 2006, Optics express.

[44]  Daniel X. Hammer,et al.  High resolution multimodal clinical ophthalmic imaging system , 2010, Optics express.

[45]  A. Roorda,et al.  Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope , 2011, Biomedical optics express.

[46]  Maureen Neitz,et al.  Adaptive optics retinal imaging reveals S-cone dystrophy in tritan color-vision deficiency. , 2007, Journal of the Optical Society of America. A, Optics, image science, and vision.

[47]  Joseph A. Izatt,et al.  Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming , 2011, Biomedical optics express.

[48]  Jessica I. W. Morgan,et al.  Cone photoreceptor mosaic disruption associated with Cys203Arg mutation in the M-cone opsin , 2009, Proceedings of the National Academy of Sciences.

[49]  A. Swaroop,et al.  High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. , 2007, Investigative ophthalmology & visual science.

[50]  Omer P. Kocaoglu,et al.  Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics , 2011, Biomedical Optics Express.

[51]  T. Mihashi,et al.  In Vivo Measurements of Cone Photoreceptor Spacing in Myopic Eyes from Images Obtained by an Adaptive Optics Fundus Camera , 2007, Japanese Journal of Ophthalmology.

[52]  John S Werner,et al.  In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. , 2006, Investigative ophthalmology & visual science.

[53]  Stephen A Burns,et al.  Individual variations in human cone photoreceptor packing density: variations with refractive error. , 2008, Investigative ophthalmology & visual science.

[54]  Christopher S. Langlo,et al.  Repeatability of In Vivo Parafoveal Cone Density and Spacing Measurements , 2012, Optometry and vision science : official publication of the American Academy of Optometry.

[55]  Robert J. Hanisch,et al.  Deconvolution of Hubbles Space Telescope images and spectra , 1996 .