Dislocation migration across coherent phase interfaces in SiGe superlattices

Abstract In this work we present a molecular dynamics study of a symmetrically strained SiGe superlattice subjected to compression. We measure the velocity of a dislocation nucleated at a step in the superlattice on a slip system that cuts across the interfaces, and compare it with that in single crystal Si and Ge for the same geometry. Simulation results of this work show that the phase interfaces in the short-period SiGe superlattice are free of misfit dislocations and that the average dislocation velocity in the SiGe superlattice sample is about two orders of magnitude lower than that in the Si and Ge single crystals for the same geometry and size. The effect of the coherent phase interfaces on the average dislocation velocity is quantified, and the underlying mechanism is identified. This work demonstrates that the coherency stress plays a dominant role on dislocation migration in coherent SiGe superlattices. It shows that a phase interface can impede or assist the migration of a dislocation depending on whether the sign of the stress field along the interface opposes or reinforces that of the dislocation core.

[1]  Nasr M. Ghoniem,et al.  Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation , 2000 .

[2]  Kang L. Wang,et al.  Thermal conductivity of symmetrically strained Si/Ge superlattices , 2000 .

[3]  Ting Zhu,et al.  Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals , 2007, Proceedings of the National Academy of Sciences.

[4]  Xiang-Yang Liu,et al.  Layer size effect on the shock compression behavior of fcc–bcc nanolaminates , 2014 .

[5]  J. Hirth,et al.  Critical layer thickness for misfit dislocation stability in multilayer structures , 1990 .

[6]  I. Beyerlein,et al.  Interface-dependent nucleation in nanostructured layered composites , 2013 .

[7]  S. Barnett,et al.  Structure and Strength of Multilayers , 1999 .

[8]  J. Hirth,et al.  Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces , 2008 .

[9]  István Groma,et al.  Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications , 1998 .

[10]  C. Henager,et al.  Slip resistance of interfaces and the strength of metallic multilayer composites , 2004 .

[11]  Rama Venkatasubramanian,et al.  Thermal conductivity of Si–Ge superlattices , 1997 .

[12]  S. Vepřek The search for novel, superhard materials , 1999 .

[13]  N. Ghoniem,et al.  Dislocation dynamics. I. A proposed methodology for deformation micromechanics. , 1990, Physical review. B, Condensed matter.

[14]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[15]  Youping Chen Local stress and heat flux in atomistic systems involving three-body forces. , 2006, The Journal of chemical physics.

[16]  Y. Fukuda,et al.  Determination of the critical layer thickness of Si1−xGex/Si heterostructures by direct observation of misfit dislocations , 1988 .

[17]  D. Dunstan,et al.  Strength of coherently strained layered superlattices , 2005 .

[18]  A. Stukowski Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .

[19]  A. Misra,et al.  An overview of interface-dominated deformation mechanisms in metallic multilayers , 2011 .

[20]  L. Kubin,et al.  Dislocation Mean Free Paths and Strain Hardening of Crystals , 2008, Science.

[21]  D. Muller,et al.  Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. , 2014, Nature materials.

[22]  T. Germann,et al.  Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces , 2011 .

[23]  S. Teichert,et al.  Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111) , 2003 .

[24]  Amit Misra,et al.  Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers , 2002 .

[25]  I. Beyerlein,et al.  Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites , 2014, Journal of Materials Science.

[26]  I. Beyerlein,et al.  Mapping dislocation nucleation behavior from bimetal interfaces , 2013 .

[27]  Weber,et al.  Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.

[28]  J. Hirth,et al.  On the strengthening effects of interfaces in multilayer fcc metallic composites , 2002 .

[29]  A. Majumdar,et al.  Nanoscale thermal transport , 2003, Journal of Applied Physics.

[30]  Zhifeng Ren,et al.  Coherent Phonon Heat Conduction in Superlattices , 2012, Science.

[31]  Vasily V. Bulatov,et al.  Mobility laws in dislocation dynamics simulations , 2003 .

[32]  S. I. Rao,et al.  Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system , 2000 .

[33]  Shuai Shao,et al.  Modeling Interface-Dominated Mechanical Behavior of Nanolayered Crystalline Composites , 2014 .