Dislocation migration across coherent phase interfaces in SiGe superlattices
暂无分享,去创建一个
David L. McDowell | Youping Chen | Youping Chen | D. McDowell | Liming Xiong | Liming Xiong | Paula A. Pluchino | Xiang Chen | Marcus Garcia | Xiang Chen | Marcus Garcia
[1] Nasr M. Ghoniem,et al. Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation , 2000 .
[2] Kang L. Wang,et al. Thermal conductivity of symmetrically strained Si/Ge superlattices , 2000 .
[3] Ting Zhu,et al. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals , 2007, Proceedings of the National Academy of Sciences.
[4] Xiang-Yang Liu,et al. Layer size effect on the shock compression behavior of fcc–bcc nanolaminates , 2014 .
[5] J. Hirth,et al. Critical layer thickness for misfit dislocation stability in multilayer structures , 1990 .
[6] I. Beyerlein,et al. Interface-dependent nucleation in nanostructured layered composites , 2013 .
[7] S. Barnett,et al. Structure and Strength of Multilayers , 1999 .
[8] J. Hirth,et al. Atomistic simulations of the shear strength and sliding mechanisms of copper–niobium interfaces , 2008 .
[9] István Groma,et al. Mesoscopic scale simulation of dislocation dynamics in fcc metals: Principles and applications , 1998 .
[10] C. Henager,et al. Slip resistance of interfaces and the strength of metallic multilayer composites , 2004 .
[11] Rama Venkatasubramanian,et al. Thermal conductivity of Si–Ge superlattices , 1997 .
[12] S. Vepřek. The search for novel, superhard materials , 1999 .
[13] N. Ghoniem,et al. Dislocation dynamics. I. A proposed methodology for deformation micromechanics. , 1990, Physical review. B, Condensed matter.
[14] J. W. Matthews,et al. Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .
[15] Youping Chen. Local stress and heat flux in atomistic systems involving three-body forces. , 2006, The Journal of chemical physics.
[16] Y. Fukuda,et al. Determination of the critical layer thickness of Si1−xGex/Si heterostructures by direct observation of misfit dislocations , 1988 .
[17] D. Dunstan,et al. Strength of coherently strained layered superlattices , 2005 .
[18] A. Stukowski. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool , 2009 .
[19] A. Misra,et al. An overview of interface-dominated deformation mechanisms in metallic multilayers , 2011 .
[20] L. Kubin,et al. Dislocation Mean Free Paths and Strain Hardening of Crystals , 2008, Science.
[21] D. Muller,et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices. , 2014, Nature materials.
[22] T. Germann,et al. Dislocation nucleation mechanisms from fcc/bcc incoherent interfaces , 2011 .
[23] S. Teichert,et al. Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111) , 2003 .
[24] Amit Misra,et al. Single-dislocation-based strengthening mechanisms in nanoscale metallic multilayers , 2002 .
[25] I. Beyerlein,et al. Review: effect of bimetal interface structure on the mechanical behavior of Cu–Nb fcc–bcc nanolayered composites , 2014, Journal of Materials Science.
[26] I. Beyerlein,et al. Mapping dislocation nucleation behavior from bimetal interfaces , 2013 .
[27] Weber,et al. Computer simulation of local order in condensed phases of silicon. , 1985, Physical review. B, Condensed matter.
[28] J. Hirth,et al. On the strengthening effects of interfaces in multilayer fcc metallic composites , 2002 .
[29] A. Majumdar,et al. Nanoscale thermal transport , 2003, Journal of Applied Physics.
[30] Zhifeng Ren,et al. Coherent Phonon Heat Conduction in Superlattices , 2012, Science.
[31] Vasily V. Bulatov,et al. Mobility laws in dislocation dynamics simulations , 2003 .
[32] S. I. Rao,et al. Atomistic simulations of dislocation–interface interactions in the Cu-Ni multilayer system , 2000 .
[33] Shuai Shao,et al. Modeling Interface-Dominated Mechanical Behavior of Nanolayered Crystalline Composites , 2014 .