RELICS-DP7: Spectroscopic Confirmation of a Dichromatic Primeval Galaxy at z ∼ 7

We report the discovery of a spectroscopically confirmed strong Lyα emitter at z = 7.0281 ± 0.0003, observed as part of the Reionization Lensing Cluster Survey (RELICS). This galaxy, dubbed “Dichromatic Primeval Galaxy” at z ∼ 7 (DP7), shows two distinct components. While fairly unremarkable in terms of its ultraviolet (UV) luminosity ( ∼0.3LUV* , where LUV* is the characteristic luminosity), DP7 has one of the highest observed Lyα equivalent widths (EWs) among Lyα emitters at z > 6 (>200 Å in the rest frame). The strong Lyα emission generally suggests a young metal-poor, low-dust galaxy; however, we find that the UV slope β of the galaxy as a whole is redder than typical star-forming galaxies at these redshifts, −1.13 ± 0.84, likely indicating, on average, a considerable amount of dust obscuration, or an older stellar population. When we measure β for the two components separately, however, we find evidence of differing UV colors, suggesting two separate stellar populations. Also, we find that Lyα is spatially extended and likely larger than the galaxy size, hinting to the possible existence of a Lyα halo. Rejuvenation or merging events could explain these results. Either scenario requires an extreme stellar population, possibly including a component of Population III stars, or an obscured active galactic nucleus. DP7, with its low UV luminosity and high Lyα EW, represents the typical galaxies that are thought to be the major contribution to the reionization of the universe, and for this reason DP7 is an excellent target for follow-up with the James Webb Space Telescope.

[1]  Timothy M. Heckman,et al.  Synthetic properties of starburst galaxies , 1995 .

[2]  Peter Anders,et al.  Spectral and photometric evolution of young stellar populations: The impact of gaseous emission at various metallicities , 2003, astro-ph/0302146.

[3]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[4]  The Volume Fraction of Ionized Intergalactic Gas at Redshift z = 6.5 , 2005, astro-ph/0511196.

[5]  D. Thompson,et al.  Keck Deep Fields. III. Luminosity-dependent Evolution of the Ultraviolet Luminosity and Star Formation Rate Densities at z~4, 3, and 2 , 2006, astro-ph/0605406.

[6]  C. Fassnacht,et al.  SERENDIPITOUS DISCOVERY OF AN OVERDENSITY OF Lyα EMITTERS AT z ∼ 4.8 IN THE CL1604 SUPERCLUSTER FIELD , 2009, 0905.2233.

[7]  M. Franx,et al.  UV CONTINUUM SLOPE AND DUST OBSCURATION FROM z ∼ 6 TO z ∼ 2: THE STAR FORMATION RATE DENSITY AT HIGH REDSHIFT , 2009, 0909.4074.

[8]  J. W. MacKenty,et al.  THE BRIGHTEST OF REIONIZING GALAXIES SURVEY: DESIGN AND PRELIMINARY RESULTS , 2010, 1011.4075.

[9]  Richard S. Ellis,et al.  Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies – I. New constraints on cosmic reionization from the luminosity and redshift-dependent fraction of Lyman α emission , 2010, 1003.5244.

[10]  T.Treu,et al.  The changing Lya optical depth in the range 6 , 2013, 1308.5985.

[11]  D. Iono,et al.  AN INTENSELY STAR-FORMING GALAXY AT z ∼ 7 WITH LOW DUST AND METAL CONTENT REVEALED BY DEEP ALMA AND HST OBSERVATIONS , 2013, 1306.3572.

[12]  M. Donahue,et al.  EVIDENCE FOR UBIQUITOUS HIGH-EQUIVALENT-WIDTH NEBULAR EMISSION IN z ∼ 7 GALAXIES: TOWARD A CLEAN MEASUREMENT OF THE SPECIFIC STAR-FORMATION RATE USING A SAMPLE OF BRIGHT, MAGNIFIED GALAXIES , 2013, 1307.5847.

[13]  M. Giavalisco,et al.  A galaxy rapidly forming stars 700 million years after the Big Bang at redshift 7.51 , 2013, Nature.

[14]  M. Franx,et al.  UV LUMINOSITY FUNCTIONS AT REDSHIFTS z ∼ 4 TO z ∼ 10: 10,000 GALAXIES FROM HST LEGACY FIELDS , 2014, 1403.4295.

[15]  M. Giavalisco,et al.  NEW OBSERVATIONS OF z ∼ 7 GALAXIES: EVIDENCE FOR A PATCHY REIONIZATION , 2014, 1403.5466.

[16]  T. Schrabback,et al.  SPITZER ULTRA FAINT SURVEY PROGRAM (SURFS UP). I. AN OVERVIEW , 2014, 1402.2352.

[17]  N. Konidaris,et al.  LINE-EMITTING GALAXIES BEYOND A REDSHIFT OF 7: AN IMPROVED METHOD FOR ESTIMATING THE EVOLVING NEUTRALITY OF THE INTERGALACTIC MEDIUM , 2014, 1404.4632.

[18]  B. Mobasher,et al.  EVIDENCE FOR PopIII-LIKE STELLAR POPULATIONS IN THE MOST LUMINOUS Lyα EMITTERS AT THE EPOCH OF REIONIZATION: SPECTROSCOPIC CONFIRMATION , 2015, 1504.01734.

[19]  M. Franx,et al.  A SPECTROSCOPIC REDSHIFT MEASUREMENT FOR A LUMINOUS LYMAN BREAK GALAXY AT z = 7.730 USING KECK/MOSFIRE , 2015, 1502.05399.

[20]  R. Bouwens,et al.  z ≳ 7 GALAXIES WITH RED SPITZER/IRAC [3.6]–[4.5] COLORS IN THE FULL CANDELS DATA SET: THE BRIGHTEST-KNOWN GALAXIES AT z ∼ 7–9 AND A PROBABLE SPECTROSCOPIC CONFIRMATION AT z = 7.48 , 2015, 1506.00854.

[21]  Edinburgh,et al.  COSMIC REIONIZATION AND EARLY STAR-FORMING GALAXIES: A JOINT ANALYSIS OF NEW CONSTRAINTS FROM PLANCK AND THE HUBBLE SPACE TELESCOPE , 2015, 1502.02024.

[22]  R. Bouwens,et al.  Lyα EMISSION FROM A LUMINOUS z = 8.68 GALAXY: IMPLICATIONS FOR GALAXIES AS TRACERS OF COSMIC REIONIZATION , 2015, 1507.02679.

[23]  D. Schaerer,et al.  Using Lyman-α to detect galaxies that leak Lyman continuum , 2014, 1404.2958.

[24]  L. Cowie,et al.  AN ULTRALUMINOUS LYα EMITTER WITH A BLUE WING AT z = 6.6 , 2016, 1606.03526.

[25]  E. Emsellem,et al.  Extended Lyman α haloes around individual high-redshift galaxies revealed by MUSE , 2015, 1509.05143.

[26]  B. Mobasher,et al.  ALMA Reveals Metals yet No Dust within Multiple Components in CR7 , 2017, 1709.06569.

[27]  R. Bouwens,et al.  Lyα and C iii] emission in z = 7–9 Galaxies: accelerated reionization around luminous star-forming systems? , 2016, 1606.01304.

[28]  O. Fèvre,et al.  The VIMOS Ultra Deep Survey: On the nature, ISM properties, and ionizing spectra of CIII]1909 emitters at z=2-4 , 2017, 1709.03990.

[29]  T. Treu,et al.  The Universe Is Reionizing at z ∼ 7: Bayesian Inference of the IGM Neutral Fraction Using Lyα Emission from Galaxies , 2017, 1709.05356.

[30]  R. Ellis,et al.  Spectroscopic Constraints on UV Metal Line Emission at z ≃ 6 − 9 The Nature of Lyα Emitting Galaxies in the Reionization-Era , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  D. Sobral,et al.  On the UV compactness and morphologies of typical Lyman α emitters from z ∼ 2 to z ∼ 6 , 2017, 1709.04470.

[32]  D. Coe,et al.  RELICS: Strong Lens Models for Five Galaxy Clusters from the Reionization Lensing Cluster Survey , 2017, The Astrophysical Journal.

[33]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[34]  A. Fontana,et al.  Beacons into the Cosmic Dark Ages: Boosted Transmission of Lyα from UV Bright Galaxies at z ≳ 7 , 2018, 1801.01891.

[35]  A. Cimatti,et al.  Discovery of a z = 7.452 High Equivalent Width Lyα Emitter from the Hubble Space Telescope Faint Infrared Grism Survey , 2017, 1712.05807.

[36]  Confirmation of double peaked Lyα emission at z = 6.593 , 2018, Astronomy & Astrophysics.

[37]  Predicting Lyα escape fractions with a simple observable , 2018, Astronomy & Astrophysics.

[38]  B. Garilli,et al.  The VIMOS Ultra-Deep Survey: evidence for AGN feedback in galaxies with CIII]-λ1908 Å emission 10.8 to 12.5 Gyr ago , 2017, Astronomy & Astrophysics.

[39]  B. Mobasher,et al.  Resolved UV and [C ii] Structures of Luminous Galaxies within the Epoch of Reionization , 2019, The Astrophysical Journal.

[40]  T. Treu,et al.  Constraining the Neutral Fraction of Hydrogen in the IGM at Redshift 7.5 , 2019, The Astrophysical Journal.

[41]  Steward Observatory,et al.  PypeIt: The Python Spectroscopic Data Reduction Pipeline , 2019, J. Open Source Softw..

[42]  R. Naidu,et al.  Model-independent constraints on the hydrogen-ionizing emissivity at z > 6 , 2019, Monthly Notices of the Royal Astronomical Society.

[43]  M. Nonino,et al.  RELICS: Reionization Lensing Cluster Survey , 2019, The Astrophysical Journal.

[44]  The ALPINE-ALMA [CII] survey , 2020, 2004.13737.

[45]  B. Koester,et al.  Strong Lens Models for 37 Clusters of Galaxies from the SDSS Giant Arcs Survey , 2019, The Astrophysical Journal Supplement Series.

[46]  L. Wisotzki,et al.  The nature of CR7 revealed with MUSE: a young starburst powering extended Ly α emission at z = 6.6 , 2020, Monthly Notices of the Royal Astronomical Society.

[47]  S. Finkelstein,et al.  Texas Spectroscopic Search for Lyα Emission at the End of Reionization. III. The Lyα Equivalent-width Distribution and Ionized Structures at z > 7 , 2020, The Astrophysical Journal.

[48]  T. Treu,et al.  Spectroscopically Confirmed Lyα Emitters from Redshift 5 to 7 behind 10 Galaxy Cluster Lenses , 2020, The Astrophysical Journal.

[49]  M. Nonino,et al.  RELICS: A Candidate z~6.8 Strong [OIII] emitter and Other Properties of z>5.5 Galaxies Inferred from Spitzer and Hubble Imaging , 2020, 2009.00020.

[50]  M. Meneghetti,et al.  Candidate Population III stellar complex at z = 6.629 in the MUSE Deep Lensed Field , 2020, Monthly Notices of the Royal Astronomical Society: Letters.

[51]  M. Gronke,et al.  Measuring the properties of reionized bubbles with resolved Lyα spectra , 2020, Monthly Notices of the Royal Astronomical Society.

[52]  G. Zamorani,et al.  The ALPINE-ALMA [CII] survey , 2020, Astronomy & Astrophysics.

[53]  S. Veilleux,et al.  Onset of Cosmic Reionization: Evidence of an Ionized Bubble Merely 680 Myr after the Big Bang , 2020, The Astrophysical Journal.

[54]  R. Bouwens,et al.  RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies , 2017, The Astrophysical Journal.

[55]  J. Prochaska,et al.  PypeIt: The Python Spectroscopic Data Reduction Pipeline , 2020, J. Open Source Softw..