How to Use Undiscovered Information Inequalities: Direct Applications of the Copy Lemma

We discuss linear programming techniques that help to deduce corollaries of non-classical inequalities for Shannon’s entropy. We focus on direct applications of the copy lemma. These applications involve implicitly some (known or unknown) non-classical universal inequalities for Shannon’s entropy, though we do not derive these inequalities explicitly. To reduce the computational complexity of these problems, we extensively use symmetry considerations. We present two examples of use of these techniques: we provide a reduced size formal inference of the best known bound for the Ingleton score (originally proven by Dougherty et al. with explicitly derived non-Shannon type inequalities), and improve the lower bound for the optimal information ratio of the secret sharing scheme for an access structure based on the Vámos matroid.

[1]  Randall Dougherty,et al.  Six New Non-Shannon Information Inequalities , 2006, 2006 IEEE International Symposium on Information Theory.

[2]  Raymond W. Yeung,et al.  A First Course in Information Theory , 2002 .

[3]  Rudolf Ahlswede,et al.  Appendix: On Common Information and Related Characteristics of Correlated Information Sources , 2006, GTIT-C.

[4]  Amos Beimel,et al.  Secret-Sharing Schemes: A Survey , 2011, IWCC.

[5]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[6]  László Csirmaz Book Inequalities , 2014, IEEE Transactions on Information Theory.

[7]  Nikolai K. Vereshchagin,et al.  Inequalities for Shannon Entropy and Kolmogorov Complexity , 1997, J. Comput. Syst. Sci..

[8]  Jessica Ruth Metcalf-Burton Improved upper bounds for the information rates of the secret sharing schemes induced by the Vámos matroid , 2011, Discret. Math..

[9]  Daniel G. Espinoza On Linear Programming, Integer Programming and Cutting Planes , 2006 .

[10]  Frantisek Matús,et al.  Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.

[11]  Nikolai K. Vereshchagin,et al.  A new class of non-Shannon-type inequalities for entropies , 2002, Commun. Inf. Syst..

[12]  Tarik Kaced Equivalence of two proof techniques for non-shannon-type inequalities , 2013, 2013 IEEE International Symposium on Information Theory.

[13]  Paul D. Seymour On secret-sharing matroids , 1992, J. Comb. Theory, Ser. B.

[14]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[15]  Frantisek Matús,et al.  Adhesivity of polymatroids , 2007, Discret. Math..

[16]  Carles Padró,et al.  Improving the Linear Programming Technique in the Search for Lower Bounds in Secret Sharing , 2018, IEEE Transactions on Information Theory.

[17]  Jayant Apte,et al.  Symmetry in network coding , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[18]  Carles Padró,et al.  Matroids Can Be Far from Ideal Secret Sharing , 2008, TCC.

[19]  Amos Beimel,et al.  On Matroids and Non-ideal Secret Sharing , 2006, TCC.

[20]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[21]  László Csirmaz,et al.  Entropy Region and Convolution , 2016, IEEE Transactions on Information Theory.

[22]  Raymond W. Yeung,et al.  Partition-Symmetrical Entropy Functions , 2014, IEEE Transactions on Information Theory.

[23]  G. R. Blakley,et al.  Secret Sharing Schemes , 2011, Encyclopedia of Cryptography and Security.

[24]  Carles Padró,et al.  On secret sharing schemes, matroids and polymatroids , 2006, J. Math. Cryptol..

[25]  Randall Dougherty,et al.  Non-Shannon Information Inequalities in Four Random Variables , 2011, ArXiv.

[26]  Alfredo De Santis,et al.  On Secret Sharing Schemes , 1998, Inf. Process. Lett..