Graphical Affine Algebra
暂无分享,去创建一个
Filippo Bonchi | Fabio Zanasi | Robin Piedeleu | Pawel Sobocinski | F. Bonchi | P. Sobocinski | R. Piedeleu | F. Zanasi
[1] Filippo Bonchi,et al. A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.
[2] Paolo Rapisarda,et al. A categorical approach to open and interconnected dynamical systems , 2015, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[3] G. M. Kelly,et al. Coherence for compact closed categories , 1980 .
[4] Aleks Kissinger,et al. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .
[5] Filippo Bonchi,et al. Full Abstraction for Signal Flow Graphs , 2015, POPL.
[6] Filippo Bonchi,et al. Interacting Hopf Algebras , 2014, ArXiv.
[7] Robin Piedeleu,et al. Picturing resources in concurrency , 2018 .
[8] Filippo Bonchi,et al. Interacting Bialgebras Are Frobenius , 2014, FoSSaCS.
[9] Filippo Bonchi,et al. The Calculus of Signal Flow Diagrams I: Linear relations on streams , 2017, Inf. Comput..
[10] Samuel J. Mason,et al. Feedback Theory-Some Properties of Signal Flow Graphs , 1953, Proceedings of the IRE.
[11] Miriam Backens,et al. Making the stabilizer ZX-calculus complete for scalars , 2015, 1507.03854.
[12] Filippo Bonchi,et al. Diagrammatic algebra: from linear to concurrent systems , 2019, Proc. ACM Program. Lang..
[13] Edsger W. Dijkstra,et al. Cooperating sequential processes , 2002 .
[14] Joachim Kock,et al. Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .
[15] A. Carboni,et al. Cartesian bicategories I , 1987 .
[16] Filippo Bonchi,et al. Functorial Semantics for Relational Theories , 2017, ArXiv.
[17] Brendan Fong,et al. Corelations are the prop for extraspecial commutative Frobenius monoids , 2016, 1601.02307.
[18] J. Willems. The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.
[19] Filippo Bonchi. Interacting Hopf Algebras: the Theory of Linear Systems (text not included) , 2019, ICTCS.
[20] Edsger W. Dijkstra,et al. Solution of a problem in concurrent programming control , 1965, CACM.
[21] John C. Baez,et al. Categories in Control , 2014, 1405.6881.
[22] Dusko Pavlovic,et al. A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.
[23] Fabio Gadducci,et al. Rewriting modulo symmetric monoidal structure , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[24] Roberto Bruni,et al. A basic algebra of stateless connectors , 2006, Theor. Comput. Sci..
[25] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[26] Samson Abramsky,et al. What are the fundamental structures of concurrency? We still don't know! , 2006, APC 25.
[27] Roberto Bruni,et al. Connector Algebras, Petri Nets, and BIP , 2011, Ershov Memorial Conference.
[28] Fabio Zanasi,et al. The Algebra of Partial Equivalence Relations , 2016, MFPS.
[29] Bob Coecke,et al. Interacting Quantum Observables , 2008, ICALP.
[30] Farhad Arbab,et al. Tiles for Reo , 2009, WADT.
[31] John C. Baez,et al. Props in Network Theory , 2017, 1707.08321.
[32] Brandon Coya,et al. Circuits, Bond Graphs, and Signal-Flow Diagrams: A Categorical Perspective , 2018, 1805.08290.
[33] Nicoletta Sabadini,et al. GENERIC COMMUTATIVE SEPARABLE ALGEBRAS AND COSPANS OF GRAPHS , 2005 .
[34] Brendan Fong,et al. A Compositional Framework for Passive Linear Networks , 2015, 1504.05625.