Graphical Affine Algebra

Graphical linear algebra is a diagrammatic language allowing to reason compositionally about different types of linear computing devices. In this paper, we extend this formalism with a connector for affine behaviour. The extension, which we call graphical affine algebra, is simple but remarkably powerful: it can model systems with richer patterns of behaviour such as mutual exclusion-with modules over the natural numbers as semantic domain-or non-passive electrical components-when considering modules over a certain field. Our main technical contribution is a complete axiomatisation for graphical affine algebra over these two interpretations. We also show, as case studies, how graphical affine algebra captures electrical circuits and the calculus of stateless connectors-a coordination language for distributed systems.

[1]  Filippo Bonchi,et al.  A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.

[2]  Paolo Rapisarda,et al.  A categorical approach to open and interconnected dynamical systems , 2015, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[3]  G. M. Kelly,et al.  Coherence for compact closed categories , 1980 .

[4]  Aleks Kissinger,et al.  Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .

[5]  Filippo Bonchi,et al.  Full Abstraction for Signal Flow Graphs , 2015, POPL.

[6]  Filippo Bonchi,et al.  Interacting Hopf Algebras , 2014, ArXiv.

[7]  Robin Piedeleu,et al.  Picturing resources in concurrency , 2018 .

[8]  Filippo Bonchi,et al.  Interacting Bialgebras Are Frobenius , 2014, FoSSaCS.

[9]  Filippo Bonchi,et al.  The Calculus of Signal Flow Diagrams I: Linear relations on streams , 2017, Inf. Comput..

[10]  Samuel J. Mason,et al.  Feedback Theory-Some Properties of Signal Flow Graphs , 1953, Proceedings of the IRE.

[11]  Miriam Backens,et al.  Making the stabilizer ZX-calculus complete for scalars , 2015, 1507.03854.

[12]  Filippo Bonchi,et al.  Diagrammatic algebra: from linear to concurrent systems , 2019, Proc. ACM Program. Lang..

[13]  Edsger W. Dijkstra,et al.  Cooperating sequential processes , 2002 .

[14]  Joachim Kock,et al.  Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .

[15]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[16]  Filippo Bonchi,et al.  Functorial Semantics for Relational Theories , 2017, ArXiv.

[17]  Brendan Fong,et al.  Corelations are the prop for extraspecial commutative Frobenius monoids , 2016, 1601.02307.

[18]  J. Willems The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.

[19]  Filippo Bonchi Interacting Hopf Algebras: the Theory of Linear Systems (text not included) , 2019, ICTCS.

[20]  Edsger W. Dijkstra,et al.  Solution of a problem in concurrent programming control , 1965, CACM.

[21]  John C. Baez,et al.  Categories in Control , 2014, 1405.6881.

[22]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[23]  Fabio Gadducci,et al.  Rewriting modulo symmetric monoidal structure , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[24]  Roberto Bruni,et al.  A basic algebra of stateless connectors , 2006, Theor. Comput. Sci..

[25]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[26]  Samson Abramsky,et al.  What are the fundamental structures of concurrency? We still don't know! , 2006, APC 25.

[27]  Roberto Bruni,et al.  Connector Algebras, Petri Nets, and BIP , 2011, Ershov Memorial Conference.

[28]  Fabio Zanasi,et al.  The Algebra of Partial Equivalence Relations , 2016, MFPS.

[29]  Bob Coecke,et al.  Interacting Quantum Observables , 2008, ICALP.

[30]  Farhad Arbab,et al.  Tiles for Reo , 2009, WADT.

[31]  John C. Baez,et al.  Props in Network Theory , 2017, 1707.08321.

[32]  Brandon Coya,et al.  Circuits, Bond Graphs, and Signal-Flow Diagrams: A Categorical Perspective , 2018, 1805.08290.

[33]  Nicoletta Sabadini,et al.  GENERIC COMMUTATIVE SEPARABLE ALGEBRAS AND COSPANS OF GRAPHS , 2005 .

[34]  Brendan Fong,et al.  A Compositional Framework for Passive Linear Networks , 2015, 1504.05625.