Optimizing the bowtie nano-rectenna topology for solar energy harvesting applications

Abstract This work illustrates the effect of nano-antenna shape on the efficiency of a complete nano-rectenna system for one specific geometry: the bowtie. The bowtie geometry is very well known for its wider band characteristics compared to the straight dipole. Based on full wave electromagnetic field solvers, the radiation efficiency and maximum matching efficiency for nano-bowties with different lengths and base angles are calculated. The results demonstrate that by adopting the bowtie topology, the radiation efficiency for an aluminum dipole can be improved from 51% to 61%, while the relative total efficiency can be improved from 46% to 57%, compared to the common straight nano-dipole mainly used in literature.

[1]  Subramanian Krishnan,et al.  Rectenna developments for solar energy collection , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[2]  Prakash Periasamy,et al.  Metal-insulator-metal point-contact diodes as a rectifier for rectenna , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[3]  K. Kempa,et al.  Carbon Nanotubes as Optical Antennae , 2007 .

[4]  Atif Shamim,et al.  Design, Optimization and Fabrication of a 28.3 THz Nano-Rectenna for Infrared Detection and Rectification , 2014, Scientific Reports.

[5]  Garret Moddel,et al.  Rectenna solar cells , 2013 .

[6]  M. M. Abd-Elrazzak,et al.  Optimized tapered dipole nanoantenna as efficient energy harvester. , 2016, Optics express.

[7]  I. E. Cortes-Mestizo,et al.  Numerical conversion efficiency of thermally isolated Seebeck nanoantennas , 2016 .

[8]  Guy A. E. Vandenbosch,et al.  Optimal solar energy harvesting efficiency of nano-rectenna systems , 2013 .

[9]  Mohamed Farhat O. Hameed,et al.  Characterization of Asymmetric Tapered Dipole Nanoantenna for Energy Harvesting Applications , 2018, Plasmonics.

[10]  R. L. Bailey,et al.  A Proposed New Concept for a Solar-Energy Converter , 1972 .

[11]  Richard Corkish,et al.  Solar energy collection by antennas , 2002 .

[12]  Guy A. E. Vandenbosch,et al.  On the use of the Method of Moments in plasmonic applications , 2010, 2010 URSI International Symposium on Electromagnetic Theory.

[13]  D. K. Kotter,et al.  Theory and Manufacturing Processes of Solar NanoAntenna Electromagnetic Collectors , 2010 .

[14]  G. Vandenbosch,et al.  Hybrid dyadic-mixed-potential and combined spectral-space domain integral-equation analysis of quasi-3-D structures in stratified media , 2003 .

[15]  Y. Schols,et al.  Separation of Horizontal and Vertical Dependencies in a Surface/Volume Integral Equation Approach to Model Quasi 3-D Structures in Multilayered Media , 2007, IEEE Transactions on Antennas and Propagation.

[16]  G. Vandenbosch,et al.  Upper bounds for the solar energy harvesting efficiency of nano-antennas , 2012 .

[17]  Guy A. E. Vandenbosch,et al.  Systematic Full-Wave Characterization of Real-Metal Nano Dipole Antennas , 2013, IEEE Transactions on Antennas and Propagation.

[18]  William C. Brown,et al.  The history of wireless power transmission , 1996 .

[19]  V. Metlushko,et al.  Volumetric Method of Moments and Conceptual Multilevel Building Blocks for Nanotopologies , 2012, IEEE Photonics Journal.

[20]  A. Asgari,et al.  The Tunability of Surface Plasmon Polaritons in Graphene Waveguide Structures , 2017, Plasmonics.

[21]  Guy A. E. Vandenbosch,et al.  Mixed-potential integral expression formulation of the electric field in a stratified dielectric medium-application to the case of a probe current source , 1992 .

[22]  Javier Alda,et al.  Conversion efficiency of broad-band rectennas for solar energy harvesting applications. , 2013, Optics express.

[23]  Guy A. E. Vandenbosch,et al.  The expansion wave concept. I. Efficient calculation of spatial Green's functions in a stratified dielectric medium , 1998 .