Low-Complexity Video Streaming for Wireless Multimedia Sensor Networks

In recent years, there has been intense research and considerable progress in solving numerous wireless sensor networking challenges. However, the key problem of enabling real-time quality-aware multimedia transmission over wireless sensor networks is largely unexplored. The large amount of data generated by most multimedia applications (compared to traditional scalar sensor networks), along with the higher QoS requirements make it difficult to meet the low energy use requirements of practical sensor networks. We explore the use of compressed sensing (aka “compressive sampling”) to reduce the energy required to encode and transmit high quality video in a severely resource-constrained environment. In this chapter, we will examine some of the major challenges of wireless multimedia sensor network (WMSN) implementation. Specifically, we examine what it would take to develop a WMSN that has similar performance (and restrictions) as a traditional scalar wireless sensor network (WSN). We then examine how we can use the new paradigm of compressed sensing (CS) to solve many of these problems.

[1]  Bruce W. Suter,et al.  Compressed sensing using generalized polygon samplers , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[2]  Bernd Girod,et al.  Analysis of video transmission over lossy channels , 2000, IEEE Journal on Selected Areas in Communications.

[3]  Trac D. Tran,et al.  Fast compressive imaging using scrambled block Hadamard ensemble , 2008, 2008 16th European Signal Processing Conference.

[4]  Amara Lynn Graps,et al.  An introduction to wavelets , 1995 .

[5]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[6]  I. Reed,et al.  Polynomial Codes Over Certain Finite Fields , 1960 .

[7]  D. Marpe,et al.  Video coding with H.264/AVC: tools, performance, and complexity , 2004, IEEE Circuits and Systems Magazine.

[8]  Tommaso Melodia,et al.  A Rate-Energy-Distortion Analysis for Compressed-Sensing-Enabled Wireless Video Streaming on Multimedia Sensors , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[9]  Juan Luis Varona,et al.  Complex networks and decentralized search algorithms , 2006 .

[10]  Trac D. Tran,et al.  Distributed Compressed Video Sensing , 2009, 2009 43rd Annual Conference on Information Sciences and Systems.

[11]  Tommaso Melodia,et al.  Compressed-Sensing-Enabled Video Streaming for Wireless Multimedia Sensor Networks , 2012, IEEE Transactions on Mobile Computing.

[12]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[13]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[14]  Wim Sweldens,et al.  Lifting scheme: a new philosophy in biorthogonal wavelet constructions , 1995, Optics + Photonics.

[15]  Steven H. Low,et al.  Understanding TCP Vegas: a duality model , 2002 .

[16]  Joachim Hagenauer,et al.  Rate-compatible punctured convolutional codes (RCPC codes) and their applications , 1988, IEEE Trans. Commun..

[17]  Suman Nath,et al.  SenseWeb: An Infrastructure for Shared Sensing , 2007, IEEE MultiMedia.

[18]  Nazanin Rahnavard,et al.  Compressive Sampling for energy efficient and loss resilient camera sensor networks , 2011, 2011 - MILCOM 2011 Military Communications Conference.

[19]  Steven H. Low,et al.  Optimization flow control—I: basic algorithm and convergence , 1999, TNET.

[20]  Martin Reisslein,et al.  Objective Video Quality Assessment Methods: A Classification, Review, and Performance Comparison , 2011, IEEE Transactions on Broadcasting.

[21]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[22]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[23]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[24]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[25]  Bruce W. Suter,et al.  Compressive Sampling With Generalized Polygons , 2011, IEEE Transactions on Signal Processing.

[26]  Mário A. T. Figueiredo,et al.  Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems , 2007, IEEE Journal of Selected Topics in Signal Processing.

[27]  Ajay Luthra,et al.  Overview of the H.264/AVC video coding standard , 2003, IEEE Trans. Circuits Syst. Video Technol..

[28]  Justin K. Romberg,et al.  Dynamic Updating for $\ell_{1}$ Minimization , 2009, IEEE Journal of Selected Topics in Signal Processing.

[29]  Joel A. Tropp,et al.  Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.

[30]  Richard G. Baraniuk,et al.  An Architecture for Compressive Imaging , 2006, 2006 International Conference on Image Processing.

[31]  Itu-T and Iso Iec Jtc Advanced video coding for generic audiovisual services , 2010 .

[32]  D. Huffman A Method for the Construction of Minimum-Redundancy Codes , 1952 .

[33]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[34]  Jean-Luc Starck,et al.  Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[35]  N. Ahmed,et al.  Discrete Cosine Transform , 1996 .

[36]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[37]  Wendi B. Heinzelman,et al.  A Survey of Visual Sensor Networks , 2009, Adv. Multim..

[38]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[39]  Samuel Cheng,et al.  Compressive video sampling , 2008, 2008 16th European Signal Processing Conference.

[40]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[41]  Ian F. Akyildiz,et al.  A survey on wireless multimedia sensor networks , 2007, Comput. Networks.

[42]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[43]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[44]  Tommaso Melodia,et al.  On the Performance of Compressive Video Streaming for Wireless Multimedia Sensor Networks , 2010, 2010 IEEE International Conference on Communications.

[45]  J. Romberg,et al.  Imaging via Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[46]  Tommaso Melodia,et al.  A distortion-minimizing rate controller for wireless multimedia sensor networks , 2010, Comput. Commun..

[47]  Ian F. Akyildiz,et al.  Wireless Multimedia Sensor Networks: Applications and Testbeds , 2008, Proceedings of the IEEE.

[48]  Mirco Musolesi,et al.  The Rise of People-Centric Sensing , 2008, IEEE Internet Comput..

[49]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.