Potential energy surface and energy levels of (HF)2 and its D isotopomers

A new six-dimensional analytical potential energy surface for the hydrogen bonded dimer (HF)2 is presented. It is based on the ab initio study by Kofranek et al., and uses 1070 points with energies up to 500 kJ mol-1 as well as recent correlated dispersion coefficients from a perturbation treatment by Rijks and Wormer, and the experimental Morse parameters for the HF monomer. The fit to the ab initio points contains 29 free and several constrained parameters and has a weighted standard deviation of 29·5 cm-1. A brief description of some properties of the new surface is given. Preliminary results of a diffusion quantum Monte Carlo (QMC) study for vibrational energy levels on the new surface as well as on a surface published by Bunker et al. are given. An interesting anharmonic isotope effect in the v 6 fundamental is discussed and explained.

[1]  M. Quack,et al.  Infrared spectrum and dynamics of the hydrogen bonded dimer (HF)2 , 1989 .

[2]  T. Carrington,et al.  An ab initio semirigid bender calculation of the rotation and trans-tunneling spectra of (HF) 2 and (DF) 2 , 1989 .

[3]  J. Binkley,et al.  Global potential energy hypersurface for dynamical studies of energy transfer in HF--HF collisions , 1987 .

[4]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[5]  B. Howard,et al.  An intermolecular potential-energy surface for (HF)2 , 1982 .

[6]  H. Schaefer,et al.  Extensive theoretical studies of the hydrogen‐bonded complexes (H2O)2, (H2O)2H+, (HF)2, (HF)2H+, F2H−, and (NH3)2 , 1986 .

[7]  S. Green Rotational excitation in H2-H2 collisions - Close-coupling calculations , 1975 .

[8]  H. Lischka,et al.  An analytical six‐dimensional potential energy surface for (HF)2 from abinitio calculations , 1988 .

[9]  M. Quack,et al.  High resolution interferometric FTIR spectroscopy of (HF)2: analysis of a low frequency fundamental near 400 cm-1 , 1987 .

[10]  I. R. Mcdonald,et al.  An intermolecular force model for (HF)2 , 1978 .

[11]  P. Hajigeorgiou,et al.  The ultraviolet spectrum of DF: Rotational analysis of the B1Σ+-X1Σ+ emission band system , 1989 .

[12]  M. Quack,et al.  Vibrational spectra of (HF)2, (HF)n and their D-isotopomers: Mode selective rearrangements and nonstatistical unimolecular decay , 1989 .

[13]  A. Douglas,et al.  The Electronic Spectrum of HF. I. The B1Σ+–X1Σ+ Band System , 1973 .

[14]  D. Coker,et al.  Structure and vibrational spectroscopy of the water dimer using quantum simulation , 1987 .

[15]  K. Jucks,et al.  Photofragment angular distributions for HF dimer: Scalar J–J correlations in state‐to‐state photodissociation , 1989 .

[16]  G. T. Fraser,et al.  Vibrational, rotational, and tunneling dependence of vibrational predissociation in the HF dimer , 1988 .

[17]  Alan S. Pine,et al.  Hydrogen bond energies of the HF and HCl dimers from absolute infrared intensities , 1986 .

[18]  P. Wormer,et al.  Correlated van der Waals coefficients. II. Dimers consisting of CO, HF, H2O, and NH3 , 1989 .

[19]  Roger Hayward,et al.  The Hydrogen Bond , 1960 .

[20]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[21]  H. Lischka,et al.  Coupled pair functional study on the hydrogen fluoride dimer. I. Energy surface and characterization of stationary points , 1988 .

[22]  D. Coker,et al.  Quantum simulation of systems with nodal surfaces , 1986 .

[23]  P. Knowles,et al.  A separable method for the calculation of dispersion and induction energy damping functions with applications to the dimers arising from He, Ne and HF , 1987 .

[24]  R. F. Barrow,et al.  The ultra-violet spectra of HF and DF , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .