Ultrafast optofluidic gain switch based on conjugated polymer in femtosecond laser fabricated microchannels

We report on an optofluidic gain switch based on polydioctylfluorene solution in a femtosecond laser fabricated microchannel. The solution provides a stimulated emission cross section of the order of 10−16 cm2. Depending on the good isolation of polymeric chains we obtain ultrafast gain switching with time constants below 150 fs and high on/off ratios (up to 100%) in a broad spectral region (450–500 nm). This enables potential modulation rates well in the terahertz range. The enhanced optofluidic functionalities combined with the flexibility of femtosecond laser micromachining pave the way to an innovative class of optical devices easily integratable in complex systems.

[1]  J. Nishii,et al.  Femtosecond laser-assisted three-dimensional microfabrication in silica. , 2001, Optics letters.

[2]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[3]  Donal D. C. Bradley,et al.  Fluorene-based conjugated polymer optical gain media , 2003 .

[4]  Stefano Taccheo,et al.  Femtosecond writing of active optical waveguides with astigmatically shaped beams , 2003 .

[5]  P. Laporta,et al.  Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching , 2006 .

[6]  Fumiyo Yoshino,et al.  Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. , 2005, Optics express.

[7]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[8]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[9]  Guglielmo Lanzani,et al.  Ultrafast optical switching in distributed feedback polymer laser , 2007 .

[10]  J Greve,et al.  Integration of microfluidics with a four-channel integrated optical Young interferometer immunosensor. , 2005, Biosensors & bioelectronics.

[11]  V. Sundström,et al.  Photoexcitation dynamics in an alternating polyfluorene copolymer , 2007 .

[12]  G. Lanzani,et al.  Ultrafast intrachain photoexcitation of polymeric semiconductors. , 2005, Physical review letters.

[13]  M. Muccini A bright future for organic field-effect transistors , 2006, Nature materials.

[14]  D. Bradley,et al.  Operating characteristics of a traveling-wave semiconducting polymer optical amplifier , 2004 .

[15]  V. Maselli,et al.  Integration of optical waveguides and microfluidic channels fabricated by femtosecond laser irradiation , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[16]  Mark G. Kuzyk,et al.  Lasing action and photodegradation of Disperse Orange 11 dye in liquid solution , 2004 .

[17]  Donal D. C. Bradley,et al.  Emission processes in conjugated polymer solutions and thin films , 1997 .

[18]  A. Ruseckas,et al.  Wavelength Conversion from Silica to Polymer Optical Fibre Communication Wavelengths via Ultrafast Optical Gain Switching in a Distributed Feedback Polymer Laser , 2007 .

[19]  Guglielmo Lanzani,et al.  Ultrafast resonant optical switching in isolated polyfluorenes chains , 2005 .

[20]  G. Lanzani,et al.  Ultrafast excitation cross-correlation photoconductivity in polyfluorene photodiodes , 2005 .

[21]  Ifor D. W. Samuel,et al.  Organic semiconductor lasers. , 2007 .

[22]  P. Corkum,et al.  Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching , 2006 .

[23]  G. Lanzani,et al.  Photophysics of charge transfer in a polyfluorene/violanthrone blend , 2005 .

[24]  Miller,et al.  Interchain Excitations in Conjugated Polymers. , 1995, Physical review letters.

[25]  Y. Bellouard,et al.  Fabrication of high-aspect ratio, micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching. , 2004, Optics express.