Reversible redox reactions in an extended polyoxometalate framework solid.

Back and forth: A concerted reversible redox reaction occurs in a pure metal oxide extended polyoxometalate framework when the accessible pockets are filled with a suitable redox agent. Direct control over the framework properties is demonstrated by repeated reversible switching between an expanded and a contracted structure. Successive recrystallizations from hot water repeatedly destroys and regenerates the framework.

[1]  M. I. Khan,et al.  [M3V18O42(H2O)12(XO4)]⋅24 H2O (M = Fe, Co; X = V, S): auf Metalloxiden basierende Gerüste aus Polyoxovanadatclustern , 1999 .

[2]  R. Thouvenot,et al.  Disubstituted tungstosilicates. 1. Synthesis, stability, and structure of the lacunary precursor polyanion of a tungstosilicate .gamma.-SiW10O368- , 1986 .

[3]  A. J. Blake,et al.  Using multimodal ligands to influence network topology in silver(I) coordination polymers , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Graham N. Newton,et al.  Supramolecular metal oxides: programmed hierarchical assembly of a protein-sized 21 kDa [(C16H36N)19{H2NC(CH2O)3P2V3W15O59}4]5- polyoxometalate assembly. , 2008, Angewandte Chemie.

[5]  P. V. Ioannou,et al.  Preparation of dehydro-l-(+)-ascorbic acid dimer by oxidation of ascorbic acid with arsenic acid/iodine and formation of complexes between arsenious acid and ascorbic acid. , 2004, Journal of inorganic biochemistry.

[6]  S. Kitagawa,et al.  Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. , 2007, Journal of the American Chemical Society.

[7]  L. Cronin,et al.  Noncovalently connected frameworks with nanoscale channels assembled from a tethered polyoxometalate-pyrene hybrid. , 2007, Angewandte Chemie.

[8]  S. Nguyen,et al.  A metal-organic framework material that functions as an enantioselective catalyst for olefin epoxidation. , 2006, Chemical communications.

[9]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[10]  Seth M. Cohen,et al.  Tandem modification of metal-organic frameworks by a postsynthetic approach. , 2008, Angewandte Chemie.

[11]  L. Cronin,et al.  Postsynthetic covalent modification of metal-organic framework (MOF) materials. , 2008, Angewandte Chemie.

[12]  M. P. Suh,et al.  Dynamic and redox active pillared bilayer open framework: single-crystal-to-single-crystal transformations upon guest removal, guest exchange, and framework oxidation. , 2004, Journal of the American Chemical Society.

[13]  R. Doedens,et al.  [M3 V18 O42 (H2 O)12 (XO4 )]⋅24 H2 O (M=Fe, Co; X=V, S): Metal Oxide Based Framework Materials Composed of Polyoxovanadate Clusters. , 1999, Angewandte Chemie.

[14]  Leroy Cronin,et al.  Polyoxometalate clusters, nanostructures and materials: from self assembly to designer materials and devices. , 2007, Chemical Society reviews.

[15]  G. Zhu,et al.  The first organo-templated cobalt phosphate with a zeolite topology. , 2000, Inorganic chemistry.

[16]  J. Warren,et al.  Reversible Concerted Ligand Substitution at Alternating Metal Sites in an Extended Solid , 2007, Science.

[17]  J. Marrot,et al.  Square versus tetrahedral iron clusters with polyoxometalate ligands. , 2008, Dalton transactions.

[18]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[19]  Yu-Fei Song,et al.  Postsynthetische kovalente Modifizierung von metall-organischen Gerüsten (MOFs) , 2008 .

[20]  P. Kroll Pathways to metastable nitride structures , 2003 .

[21]  Scott G. Mitchell,et al.  Isolation of extendable transition metal incorporated polyoxometalate intermediates with structural control. , 2008, Dalton transactions.