A posteriori error estimation and adaptivity in hp virtual elements

An explicit and computable error estimator for the $$hp$$hp version of the virtual element method (VEM), together with lower and upper bounds with respect to the exact energy error, is presented. Such error estimator is employed to provide, following the approach of Melenk and Wohlmuth (Adv Comput Math 15(1–4):311–331, 2001), $$hp$$hp adaptive mesh refinements for very general polygonal meshes. In addition, a novel VEM $$hp$$hp Clément quasi-interpolant, instrumental for the a posteriori error analysis, is introduced. The performances of the adaptive method are validated by a number of numerical experiments.

[1]  Susanne C. Brenner,et al.  Some Estimates for Virtual Element Methods , 2017, Comput. Methods Appl. Math..

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  Lourenco Beirao da Veiga,et al.  Stability Analysis for the Virtual Element Method , 2016, 1607.05988.

[4]  David Mora,et al.  A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem , 2016, Comput. Math. Appl..

[5]  G. Vacca An H1-conforming virtual element for Darcy and Brinkman equations , 2017 .

[6]  Ricardo H. Nochetto,et al.  Convergence and optimality of $${\mathbf {hp}}$$hp-AFEM , 2016, Numerische Mathematik.

[7]  Peter Wriggers,et al.  A virtual element method for contact , 2016 .

[8]  L. Mascotto THE HP VERSION OF THE VIRTUAL ELEMENT METHOD , 2018 .

[9]  L. Beirao da Veiga,et al.  Divergence free Virtual Elements for the Stokes problem on polygonal meshes , 2015, 1510.01655.

[10]  J. Oden,et al.  A procedure for a posteriori error estimation for h-p finite element methods , 1992 .

[11]  Ilaria Perugia,et al.  A Plane Wave Virtual Element Method for the Helmholtz Problem , 2015, 1505.04965.

[12]  Alexandre Ern,et al.  Hybrid high-order methods for variable-diffusion problems on general meshes , 2015 .

[13]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[14]  E. Süli,et al.  A note on the design of hp-adaptive finite element methods for elliptic partial differential equations , 2005 .

[15]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[16]  Martin Vohralík,et al.  hp-Adaptation Driven by Polynomial-Degree-Robust A Posteriori Error Estimates for Elliptic Problems , 2016, SIAM J. Sci. Comput..

[17]  Franco Dassi,et al.  High-order Virtual Element Method on polyhedral meshes , 2017, Comput. Math. Appl..

[18]  Lorenzo Mascotto,et al.  Ill‐conditioning in the virtual element method: Stabilizations and bases , 2017, 1705.10581.

[19]  L. Beirao da Veiga,et al.  Basic principles of hp virtual elements on quasiuniform meshes , 2015, 1508.02242.

[20]  Felipe Lepe,et al.  A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges , 2015, Journal of Scientific Computing.

[21]  Glaucio H. Paulino,et al.  On the Virtual Element Method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes , 2014 .

[22]  K. Lipnikov,et al.  The nonconforming virtual element method , 2014, 1405.3741.

[23]  Silvia Bertoluzza,et al.  BDDC and FETI-DP for the virtual element method , 2017, 1708.03599.

[24]  N. Sukumar,et al.  Conforming polygonal finite elements , 2004 .

[25]  Christine Bernardi,et al.  An error indicator for mortar element solutions to the Stokes problem , 2001 .

[26]  Ahmed Alsaedi,et al.  Equivalent projectors for virtual element methods , 2013, Comput. Math. Appl..

[27]  C. Canuto,et al.  Convergence and Optimality of hp-AFEM , 2015, 1503.03996.

[28]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[29]  Jens Markus Melenk,et al.  HP-INTERPOLATION OF NON-SMOOTH FUNCTIONS , 2003 .

[30]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[31]  Stefano Giani,et al.  hp-adaptive discontinuous Galerkin methods for non-stationary convection-diffusion problems , 2019, Comput. Math. Appl..

[32]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[33]  Emmanuil H. Georgoulis,et al.  A posteriori error estimates for the virtual element method , 2016, Numerische Mathematik.

[34]  Ilaria Perugia,et al.  Non-conforming Harmonic Virtual Element Method: $$h$$h- and $$p$$p-Versions , 2018, J. Sci. Comput..

[35]  Lourenço Beirão da Veiga,et al.  Virtual Elements for Linear Elasticity Problems , 2013, SIAM J. Numer. Anal..

[36]  L. Mascotto,et al.  Exploring high-order three dimensional virtual elements: Bases and stabilizations , 2017, Comput. Math. Appl..

[37]  P. F. Antonietti,et al.  The fully nonconforming virtual element method for biharmonic problems , 2016, 1611.08736.

[38]  P. F. Antonietti,et al.  A multigrid algorithm for the $p$-version of the Virtual Element Method , 2017, 1703.02285.

[39]  Sergej Rjasanow,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes Higher Order Bem-based Fem on Polygonal Meshes , 2022 .

[40]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[41]  Stefano Berrone,et al.  A residual a posteriori error estimate for the Virtual Element Method , 2017 .

[42]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[43]  Marjorie A. McClain,et al.  A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .

[44]  Andrea Cangiani,et al.  A posteriori error estimates for mixed virtual element methods , 2019, 1904.10054.

[45]  Gianmarco Manzini,et al.  Residual a posteriori error estimation for the Virtual Element Method for elliptic problems , 2015 .

[46]  Lorenzo Mascotto,et al.  Exponential convergence of the hp virtual element method in presence of corner singularities , 2017, Numerische Mathematik.

[47]  Lorenzo Mascotto,et al.  The harmonic virtual element method: stabilization and exponential convergence for the Laplace problem on polygonal domains , 2017, IMA Journal of Numerical Analysis.

[48]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[49]  Barbara I. Wohlmuth,et al.  On residual-based a posteriori error estimation in hp-FEM , 2001, Adv. Comput. Math..

[50]  Gabriel N. Gatica,et al.  A mixed virtual element method for the pseudostress–velocity formulation of the Stokes problem , 2017 .

[51]  Glaucio H. Paulino,et al.  Polygonal finite elements for topology optimization: A unifying paradigm , 2010 .

[52]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[53]  Jens Markus Melenk,et al.  hp-Interpolation of Nonsmooth Functions and an Application to hp-A posteriori Error Estimation , 2005, SIAM J. Numer. Anal..

[54]  Stefano Berrone,et al.  A hybrid mortar virtual element method for discrete fracture network simulations , 2016, J. Comput. Phys..