Surface motion of active rock glaciers in the Sierra Nevada, California, USA: inventory and a case study using InSAR

Abstract. Despite the abundance of rock glaciers in the Sierra Nevada of California, USA, few efforts have been made to measure their surface flow. Here we use the interferometric synthetic aperture radar (InSAR) technique to compile a benchmark inventory describing the kinematic state of 59 active rock glaciers in this region. In the late summer of 2007, these rock glaciers moved at speeds that range from 14 cm yr−1 to 87 cm yr−1, with a regional mean value of 53 cm yr−1. Our inventory reveals a spatial difference: rock glaciers in the southern Sierra Nevada moved faster than the ones in the central Sierra Nevada. In addition to the regional mapping, we also conduct a case study to measure the surface flow of the Mount Gibbs rock glacier in fine spatial and temporal detail. The InSAR measurements over this target reveal (1) that the spatial pattern of flow is correlated with surface geomorphic features and (2) a significant seasonal variation of flow speed whose peak value was 48 cm yr−1in the fall of 2007, more than twice the minimum value observed in the spring of 2008. The seasonal variation lagged air temperatures by three months. Our finding on the seasonal variation of surface speed reinforces the importance of a long time series with high temporal sampling rates to detect possible long-term changes of rock glacier kinematics in a warming climate.

[1]  A. Cox,et al.  ROCK GLACIERS IN THE ALASKA RANGE , 1959 .

[2]  D. Barsch Nature and importance of mass‐wasting by rock glaciers in alpine permafrost environments , 1977 .

[3]  W. Haeberli,et al.  Creep of mountain permafrost:internal structure and flow of Alpine rock glaciers. , 1985 .

[4]  S. Wagner Creep of alpine permafrost, investigated on the murtel rock glacier , 1992 .

[5]  H. E. Martin,et al.  Rock glaciers : II models and mechanisms , 1992 .

[6]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[7]  A. Gillespie,et al.  Debris-Covered Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstructions , 1994, Quaternary Research.

[8]  C. Daly,et al.  A Statistical-Topographic Model for Mapping Climatological Precipitation over Mountainous Terrain , 1994 .

[9]  D. Barsch Rockglaciers: Indicators for the Present and Former Geoecology in High Mountain Environments , 1996 .

[10]  Andreas Kääb,et al.  Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps , 1997 .

[11]  A. Gillespie,et al.  Timing and significance of Late-glacial and Holocene cirque glaciation in the Sierra Nevada, California , 1997 .

[12]  Walter H. F. Smith,et al.  New, improved version of generic mapping tools released , 1998 .

[13]  D. Clark,et al.  Galena Creek rock glacier revisited—new observations on an old controversy , 1998 .

[14]  O. Humlum The climatic significance of rock glaciers , 1998 .

[15]  J. L. Sollid,et al.  Rock glaciers on Prins Karls Forland, Svalbard. I: internal structure, flow velocity and morphology , 1998 .

[16]  W. T. Pfeffer,et al.  Rock glacier dynamics and paleoclimatic implications , 1999 .

[17]  J. Giardino,et al.  Engineering geomorphology of rock glaciers , 1999 .

[18]  Helmut Rott,et al.  Analysis of mass movements in alpine terrain by means of SAR interferometry , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[19]  Pollen analysis and 14C age of moss remains in a permafrost core recovered from the active rock glacier Murtèl-Corvatsch, Swiss Alps : geomorphological and glaciological implications , 1999 .

[20]  M. Clark,et al.  Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data , 1999 .

[21]  K. Isaksen,et al.  Composition, flow and development of two tongue‐shaped rock glaciers in the permafrost of Svalbard , 2000 .

[22]  K. Krainer,et al.  Reichenkar rock glacier: a glacier derived debris-ice system in the western Stubai Alps, Austria , 2000 .

[23]  O. Humlum The geomorphic significance of rock glaciers: estimates of rock glacier debris volumes and headwall recession rates in West Greenland , 2000 .

[24]  Harald Johnsen,et al.  InSAR for estimation of changes in snow water equivalent of dry snow , 2001, IEEE Trans. Geosci. Remote. Sens..

[25]  Lukas U. Arenson,et al.  Borehole deformation measurements and internal structure of some rock glaciers in Switzerland , 2002 .

[26]  Howard A. Zebker,et al.  Phase unwrapping for large SAR interferograms: statistical segmentation and generalized network models , 2002, IEEE Trans. Geosci. Remote. Sens..

[27]  A. Kääb Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data , 2002 .

[28]  Eric Rignot,et al.  Rock glacier surface motion in Beacon Valley, Antarctica, from synthetic‐aperture radar interferometry , 2002 .

[29]  Gianfranco Fornaro,et al.  A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  J. Milana,et al.  Internal structure and behaviour of a rock glacier in the Arid Andes of Argentina , 2002 .

[31]  Michael J. Oimoen,et al.  The National Elevation Dataset , 2002 .

[32]  Lado W. Kenyi,et al.  Estimation of rock glacier surface deformation using SAR interferometry data , 2003, IEEE Trans. Geosci. Remote. Sens..

[33]  Tazio Strozzi,et al.  Detecting and quantifying mountain permafrost creep from in situ inventory, space-borne radar interferometry and airborne digital photogrammetry , 2004 .

[34]  K. Krainer,et al.  Dynamics of an active rock glacier (Ötztal Alps, Austria) , 2004, Quaternary Research.

[35]  Christophe Lambiel,et al.  Contribution of real‐time kinematic GPS in the study of creeping mountain permafrost: examples from the Western Swiss Alps , 2004 .

[36]  A. Brenning Geomorphological, hydrological and climatic significance of rock glaciers in the Andes of Central Chile (33–35°S) , 2005 .

[37]  J. Janke Long-Term Flow Measurements (1961-2002) of the Arapaho, Taylor, and Fair Rock Glaciers, Front Range, Colorado , 2005 .

[38]  Andreas Kääb,et al.  Permafrost creep and rock glacier dynamics , 2006 .

[39]  J. José,et al.  Rock glacier dynamics in a marginal periglacial high mountain environment: Flow, movement (1991–2000) and structure of the Argualas rock glacier, the Pyrenees , 2006 .

[40]  E. Maurer Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under two emissions scenarios , 2007 .

[41]  Andreas Kääb,et al.  On the response of rockglacier creep to surface temperature increase , 2007 .

[42]  Jessica D. Lundquist,et al.  Surface temperature patterns in complex terrain: Daily variations and long‐term change in the central Sierra Nevada, California , 2007 .

[43]  S. Gruber,et al.  Permafrost in steep bedrock slopes and its temperature‐related destabilization following climate change , 2007 .

[44]  C. Millar,et al.  Rock glaciers and related periglacial landforms in the Sierra Nevada, CA, USA; inventory, distribution and climatic relationships , 2008 .

[45]  Andreas Kääb,et al.  Fast deformation of perennially frozen debris in a warm rock glacier in the Swiss Alps: An effect of liquid water , 2008 .

[46]  B. Whalley,et al.  Relict rock glaciers and protalus lobes in the British Isles: implications for Late Pleistocene mountain geomorphology and palaeoclimate , 2008 .

[47]  O. Humlum,et al.  Thermal regime of openwork block fields on the mountains Elgåhogna and Sølen, central‐eastern Norway , 2008 .

[48]  A. Bauer,et al.  LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008 , 2009 .

[49]  J. Degenhardt,et al.  Development of tongue-shaped and multilobate rock glaciers in alpine environments – Interpretations from ground penetrating radar surveys , 2009 .

[50]  A. Ribolini,et al.  Two Decades of Responses (1986-2006) to Climate by the Laurichard Rock Glacier, French Alps , 2009 .

[51]  Christophe Lambiel,et al.  Overview of rock glacier kinematics research in the Swiss Alps , 2010 .

[52]  Howard A. Zebker,et al.  Geodetically Accurate InSAR Data Processor , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[53]  M. Stoffel,et al.  Rock-glacier dynamics and magnitude-frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps , 2010 .

[54]  D. Dethier,et al.  Internal structure of the Green Lake 5 rock glacier, Colorado Front Range, USA , 2011 .

[55]  K. Verdin,et al.  Evaluation of SNODAS snow depth and snow water equivalent estimates for the Colorado Rocky Mountains, USA , 2011 .

[56]  S. Gruber,et al.  Permanent Monitoring of Rock Glaciers with Low-cost GPS , 2011 .

[57]  C. Millar,et al.  Thermal and hydrologic attributes of rock glaciers and periglacial talus landforms: Sierra Nevada, California, USA , 2012 .