Computing points of small height for cubic polynomials

Let f in Q[z] be a polynomial of degree d at least two. The associated canonical height \hat{h}_f is a certain real-valued function on Q that returns zero precisely at preperiodic rational points of f. Morton and Silverman conjectured in 1994 that the number of such points is bounded above by a constant depending only on d. A related conjecture claims that at non-preperiodic rational points, \hat{h}_f is bounded below by a positive constant (depending only on d) times some kind of height of f itself. In this paper, we provide support for these conjectures in the case d=3 by computing the set of small height points for several billion cubic polynomials.

[1]  Joseph H. Silverman,et al.  Periodic points, multiplicities, and dynamical units. , 1995 .

[2]  Robert L. Benedetto,et al.  Preperiodic points of polynomials over global fields , 2005, math/0506480.

[3]  Patrick Morton,et al.  Arithmetic properties of periodic points of quadratic maps, II , 1992 .

[4]  Gregory S. Call,et al.  Canonical Heights on Projective Space , 1997 .

[5]  Joseph H. Silverman,et al.  Diophantine Geometry: An Introduction , 2000, The Mathematical Gazette.

[6]  Barry Mazur,et al.  On Periodic Points , 1965 .

[7]  Joseph H. Silverman,et al.  Rational periodic points of rational functions , 1994 .

[8]  The Complete Classification of Rational Preperiodic Points of Quadratic Polynomials over Q: A Refined Conjecture , 1995, math/9512217.

[9]  Fernando Q. Gouvêa,et al.  P-Adic Numbers: An Introduction , 1993 .

[10]  T. Pezda Polynomial cycles in certain local domains , 1994 .

[11]  Fernando Q. Gouvêa p -adic Numbers , 1993 .

[12]  Loïc Merel,et al.  Bornes pour la torsion des courbes elliptiques sur les corps de nombres , 1996 .

[13]  J. Silverman The Arithmetic of Dynamical Systems , 2007 .

[14]  Patrick Ingram Lower bounds on the canonical height associated to the morphism $${\phi(z)= z^d+c}$$ , 2007 .

[15]  Michelle Manes,et al.  Arithmetic Dynamics of Rational Maps , 2007 .

[16]  Gregory S. Call,et al.  Canonical heights on varieties with morphisms , 1993 .

[17]  D. G. Northcott,et al.  Periodic Points on an Algebraic Variety , 1950 .

[18]  W. Narkiewicz,et al.  Polynomial cycles in algebraic number fields , 1989 .

[19]  S. Lang Fundamentals of Diophantine Geometry , 1983 .

[20]  Bjorn Poonen,et al.  Cycles of quadratic polynomials and rational points on a genus-$2$ curve , 1995 .

[21]  Michael E. Zieve Cycles of polynomial mappings , 1996 .

[22]  Matthew Baker A lower bound for average values of dynamical Green’s functions , 2005 .

[23]  Barry Mazur,et al.  Modular curves and the eisenstein ideal , 1977 .