The Effect of the number of InGaN/GaN pairs on the photoelectrochemical properties of InGaN/GaN multi quantum wells

[1]  A. Vescan,et al.  Investigations of the electrochemical stability of InGaN photoanodes in different electrolytes , 2015 .

[2]  H. Bouchriha,et al.  Hole intersubband transitions in wurtzite and zinc-blende strained AlGaN/GaN quantum wells and its interband interaction dependence , 2015 .

[3]  Z. Mi,et al.  High efficiency solar-to-hydrogen conversion on a monolithically integrated InGaN/GaN/Si adaptive tunnel junction photocathode. , 2015, Nano letters.

[4]  J. Ha,et al.  Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires , 2015 .

[5]  J. Sheu,et al.  Photoelectrochemical hydrogen generation with linear gradient Al composition dodecagon faceted AlGaN/n-GaN electrode. , 2014, Optics express.

[6]  A. Galeckas,et al.  Tunneling in ZnO/ZnCdO quantum wells towards next generation photovoltaic cells , 2014 .

[7]  Cheul‐Ro Lee,et al.  Different characteristics of InGaN/GaN multiple quantum well heterostructures grown on m- and r-planes of a single n-GaN nanowire using metalorganic chemical vapor deposition , 2014 .

[8]  Z. Mi,et al.  One-step overall water splitting under visible light using multiband InGaN/GaN nanowire heterostructures. , 2013, ACS nano.

[9]  P. Bogdanoff,et al.  Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy. , 2013, Journal of the American Chemical Society.

[10]  S. Yokojima,et al.  Photoelectrochemical Properties of InxGa1–xN/GaN Multiquantum Well Structures in Depletion Layers , 2011 .

[11]  James S. Speck,et al.  High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm , 2011 .

[12]  Qimin Yan,et al.  Hybrid functional investigations of band gaps and band alignments for AlN, GaN, InN, and InGaN. , 2011, The Journal of chemical physics.

[13]  Bin Liu,et al.  Stable response to visible light of InGaN photoelectrodes , 2008 .

[14]  Scott W. Donne,et al.  Flat-Band Potential of a Semiconductor: Using the Mott Schottky Equation. , 2007 .

[15]  Kazuhiro Ohkawa,et al.  Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN. , 2007, The Journal of chemical physics.

[16]  B. Deveaud,et al.  High spatial resolution picosecond cathodoluminescence of InGaN quantum wells , 2006 .

[17]  Wladek Walukiewicz,et al.  Structure and electronic properties of InN and In-rich group III-nitride alloys , 2006 .

[18]  Y. Narukawa,et al.  Slip systems and misfit dislocations in InGaN epilayers , 2003 .

[19]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[20]  T. Seong,et al.  Structural and optical properties of InGaN/GaN multiple quantum wells : The effect of the number of InGaN/GaN pairs , 2000 .

[21]  Michael Kneissl,et al.  Phase separation in InGaN multiple quantum wells annealed at high nitrogen pressures , 1999 .

[22]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[23]  Larry A. Coldren,et al.  Growth and characterization of bulk InGaN films and quantum wells , 1996 .

[24]  I. Lundström,et al.  Stabilization of n‐Si Photoanodes to Surface Corrosion in Aqueous Electrolyte with a Thin Film of Polypyrrole , 1981 .