Identification of constitutive parameters – optimization strategies and applications

The pursuit to reduce manufacturing costs and increase product quality has led industries to use commercial codes and appropriate material models to simulate a wide range of metal forming operations. This scenario has prompted a healthy discussion on the strategies to obtaining constitutive parameters able to yield accurate numerical predictions. Optimization-based parameter identification techniques have opened completely new routes to determine material parameters for this class of forming problems. Notwithstanding, the most appropriate optimization strategy (or development of new ones) for the trinomial forming operation – constitutive model – constitutive parameters is still open to debate. This work highlights the important role that optimization strategies play to determine parameters of constitutive models. A brief description of gradient-based, gradient-free and hybrid optimization approaches is presented within the framework of parameter identification. Comparative studies and applications to classical and damaged material models are also discussed. Die Anstrengungen zur Reduktion der Herstellungskosten und zur Erhohung der Produktqualitat fuhren dazu, dass Firmen kommerzielle Berechnungsprogramme und entsprechenden Materialmodelle verwenden, um eine breite Palette von Metallumformvorgangen zu simulieren. Dies hat die Diskussion uber die Strategien zur Bestimmung konstitutiver Parameter zur Erlangung genauer numerischer Vorhersagen angeregt. Optimierungsbasierte Parameteridentifikationstechniken eroffneten hierbei vollig neue Wege, um Materialparameter fur diese Klasse von Umformproblemen zu bestimmen. Ungeachtet dessen wird die am besten geeignete Optimierungsstrategie (oder deren Neuentwicklung) fur das dreistufige Problem Umformvorgang – konstitutives Modell – konstitutive Parameter immer noch diskutiert. Diese Arbeit unterstreicht die wichtige Rolle, die Optimierungsstrategien bei der Parameterbestimmung von Stoffgesetzen spielen. Eine kurze Beschreibung der gradientenbasierten, gradientenfreien und hybriden Optimierungsansatze wird im Rahmen der Parameteridentifikation dargestellt. Vergleichende Untersuchungen zur Anwendungen klassischer und Schadigungsmaterialmodelle werden ebenfalls diskutiert.

[1]  Mohamed S. Gadala,et al.  On the finite element analysis of inverse problems in fracture mechanics , 1999 .

[2]  G. J. Creus,et al.  A modified finite difference sensitivity analysis method allowing remeshing in large strain path‐dependent problems , 2004 .

[3]  Pablo A. Muñoz-Rojas,et al.  A viscoelastic viscoplastic constitutive model including mechanical degradation: Uniaxial transient finite element formulation at finite strains and application to space truss structures , 2015 .

[4]  António Andrade-Campos,et al.  Novel criteria for determination of material model parameters , 2012 .

[5]  Eduardo Lenz Cardoso,et al.  Particle swarm optimization and identification of inelastic material parameters , 2013 .

[6]  Hedi Belhadjsalah,et al.  Parameter identification of an elasto-plastic behaviour using artificial neural networks–genetic algorithm method , 2011 .

[7]  Brett E Bouma,et al.  A Combined FEM/Genetic Algorithm for Vascular Soft tissue Elasticity Estimation , 2006, Cardiovascular engineering.

[8]  P. Perzyna,et al.  Identification of the model describing viscoplastic behaviour of high strength metals , 2011 .

[9]  J. Ponthot,et al.  A cascade optimization methodology for automatic parameter identification and shape/process optimization in metal forming simulation , 2006 .

[10]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[11]  E. L. Cardoso,et al.  Parameter Identification of Damage Models Using Genetic Algorithms , 2010 .

[12]  J. Lemaître A CONTINUOUS DAMAGE MECHANICS MODEL FOR DUCTILE FRACTURE , 1985 .

[13]  G Bernauer,et al.  Micro‐mechanical modelling of ductile damage and tearing – results of a European numerical round robin , 2002 .

[14]  Alexandre C. B. Delbem,et al.  Genetic Algorithm for the Determination of Linear Viscoelastic Relaxation Spectrum from Experimental Data , 2009 .

[15]  Meinhard Kuna,et al.  Identification of material parameters of the Gurson–Tvergaard–Needleman model by combined experimental and numerical techniques , 2005 .

[16]  Dorel Banabic,et al.  Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions , 2003 .

[17]  Montgomery T. Shaw,et al.  Introduction to Polymer Viscoelasticity: Shaw/Introduction , 2005 .

[18]  Jianguo Lin,et al.  GA-based multiple objective optimisation for determining viscoplastic constitutive equations for superplastic alloys , 1999 .

[19]  M. Vaz,et al.  Numerical Prediction of Ductile Failure Onset under Tensile and Compressive Stress States , 2010 .

[20]  Tie Lin Liu,et al.  Optimization Design for Steel Structure Residence Based on the Sequential Quadratic Programming Method , 2012 .

[21]  Nicholas A Alexander,et al.  Levenberg–Marquardt vs Powell’s dogleg method for Gurson–Tvergaard–Needleman plasticity model , 2012 .

[22]  Stéphane Avril,et al.  Identification of Elasto-Plastic Constitutive Parameters from Statically Undetermined Tests Using the Virtual Fields Method , 2006 .

[23]  R.D.K. Misra,et al.  On the strain rate sensitivity of high density polyethylene and polypropylenes , 2003 .

[24]  Marco Antonio Luersen,et al.  Globalized Nelder-Mead method for engineering optimization , 2002 .

[25]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[26]  J. Huétink,et al.  Simulation of materials processing : theory, methods and applications : Proceedings of the Sixth International Conference on Numerical Methods in Industrial Forming Processes - NUMIFORM '98, Enschede, Netherlands, 22-25 June 1998 , 1998 .

[27]  Orazio Giustolisi,et al.  Modelling mechanical behaviour of rubber concrete using evolutionary polynomial regression , 2011 .

[28]  George I. N. Rozvany,et al.  WCSMO-1 : Proceedings of the First World Congress of Structural and Multidisciplinary Optimization : 28 May-2 June 1995, Goslar, Germany , 1995 .

[29]  Ting-Yu Chen,et al.  An efficient and practical approach to obtain a better optimum solution for structural optimization , 2013 .

[30]  P. Manach,et al.  Material parameters identification: Gradient-based, genetic and hybrid optimization algorithms , 2008 .