Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling.

[1]  张剑,et al.  Communication System , 2022, Wireless Power Transfer Technologies for Electric Vehicles.

[2]  Ruedi Aebersold,et al.  Mass spectrometry‐driven phosphoproteomics: patterning the systems biology mosaic , 2014, Wiley interdisciplinary reviews. Developmental biology.

[3]  P. Bork,et al.  Evolution and functional cross‐talk of protein post‐translational modifications , 2013, Molecular systems biology.

[4]  M. Mann,et al.  Status of Large-scale Analysis of Post-translational Modifications by Mass Spectrometry* , 2013, Molecular & Cellular Proteomics.

[5]  S. Fields,et al.  Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation , 2013, Nature Methods.

[6]  David E. James,et al.  Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2 , 2013, Cell metabolism.

[7]  M. Mann,et al.  A large synthetic peptide and phosphopeptide reference library for mass spectrometry–based proteomics , 2013, Nature Biotechnology.

[8]  Tony Pawson,et al.  Interaction Domains of Sos1/Grb2 Are Finely Tuned for Cooperative Control of Embryonic Stem Cell Fate , 2013, Cell.

[9]  M. Peng,et al.  Toward a comprehensive characterization of a human cancer cell phosphoproteome. , 2013, Journal of proteome research.

[10]  Dmitrij Frishman,et al.  Phosphorylation Variation during the Cell Cycle Scales with Structural Propensities of Proteins , 2013, PLoS Comput. Biol..

[11]  Jürgen Cox,et al.  Proteomic Analysis of Cellular Systems , 2013 .

[12]  Jürgen Cox,et al.  1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data , 2012, BMC Bioinformatics.

[13]  Emmanuel D Levy,et al.  Protein abundance is key to distinguish promiscuous from functional phosphorylation based on evolutionary information , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  Jürgen Cox,et al.  Expert System for Computer-assisted Annotation of MS/MS Spectra* , 2012, Molecular & Cellular Proteomics.

[15]  W. Lim,et al.  Systematic Functional Prioritization of Protein Posttranslational Modifications , 2012, Cell.

[16]  K. Lage,et al.  Quantitative maps of protein phosphorylation sites across 14 different rat organs and tissues , 2012, Nature Communications.

[17]  Richard J. Lavallee,et al.  Optimized fast and sensitive acquisition methods for shotgun proteomics on a quadrupole orbitrap mass spectrometer. , 2012, Journal of proteome research.

[18]  Matthias Mann,et al.  Analysis of High Accuracy, Quantitative Proteomics Data in the MaxQB Database , 2012, Molecular & Cellular Proteomics.

[19]  Bin Zhang,et al.  PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse , 2011, Nucleic Acids Res..

[20]  S. Gerber,et al.  Rapid and reproducible single-stage phosphopeptide enrichment of complex peptide mixtures: application to general and phosphotyrosine-specific phosphoproteomics experiments. , 2011, Analytical chemistry.

[21]  Holger Conzelmann,et al.  Rapid phospho-turnover by receptor tyrosine kinases impacts downstream signaling and drug binding. , 2011, Molecular cell.

[22]  M. Mann,et al.  Large-scale phosphosite quantification in tissues by a spike-in SILAC method , 2011, Nature Methods.

[23]  Albert J R Heck,et al.  Enhancing the Identification of Phosphopeptides from Putative Basophilic Kinase Substrates Using Ti (IV) Based IMAC Enrichment* , 2011, Molecular & Cellular Proteomics.

[24]  Edward L. Huttlin,et al.  A large-scale method to measure absolute protein phosphorylation stoichiometries , 2011, Nature Methods.

[25]  M. Mann,et al.  Mass Spectrometry-based Proteomics Using Q Exactive, a High-performance Benchtop Quadrupole Orbitrap Mass Spectrometer* , 2011, Molecular & Cellular Proteomics.

[26]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[27]  M. Mann,et al.  Feasibility of large-scale phosphoproteomics with higher energy collisional dissociation fragmentation. , 2010, Journal of proteome research.

[28]  Tony Pawson,et al.  Phosphotyrosine Signaling: Evolving a New Cellular Communication System , 2010, Cell.

[29]  M. Mann,et al.  Decoding signalling networks by mass spectrometry-based proteomics , 2010, Nature Reviews Molecular Cell Biology.

[30]  S. Brunak,et al.  Quantitative Phosphoproteomics Reveals Widespread Full Phosphorylation Site Occupancy During Mitosis , 2010, Science Signaling.

[31]  Matthias Mann,et al.  Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. , 2009, Journal of proteome research.

[32]  S. Lemeer,et al.  The phosphoproteomics data explosion. , 2009, Current opinion in chemical biology.

[33]  B. Snel,et al.  In-depth Qualitative and Quantitative Profiling of Tyrosine Phosphorylation Using a Combination of Phosphopeptide Immunoaffinity Purification and Stable Isotope Dimethyl Labeling* , 2009, Molecular & Cellular Proteomics.

[34]  G. Superti-Furga,et al.  Target profiling of small molecules by chemical proteomics. , 2009, Nature chemical biology.

[35]  M. Mann,et al.  Universal sample preparation method for proteome analysis , 2009, Nature Methods.

[36]  T. Hunter Tyrosine phosphorylation: thirty years and counting. , 2009, Current opinion in cell biology.

[37]  C. Eyers Universal sample preparation method for proteome analysis , 2009 .

[38]  N. Gray,et al.  Targeting cancer with small molecule kinase inhibitors , 2009, Nature Reviews Cancer.

[39]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[40]  T. Hunter The age of crosstalk: phosphorylation, ubiquitination, and beyond. , 2007, Molecular cell.

[41]  J. Ferrell,et al.  Mechanisms of specificity in protein phosphorylation , 2007, Nature Reviews Molecular Cell Biology.

[42]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[43]  G. Johnson,et al.  EGFR kinase possesses a broad specificity for ErbB phosphorylation sites, and ligand increases catalytic-centre activity without affecting substrate binding affinity. , 2005, The Biochemical journal.

[44]  L. Scapozza,et al.  Unique substrate specificity of anaplastic lymphoma kinase (ALK): development of phosphoacceptor peptides for the assay of ALK activity. , 2005, Biochemistry.

[45]  David O. Morgan,et al.  Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates , 2005, Nature.

[46]  J. Rush,et al.  Immunoaffinity profiling of tyrosine phosphorylation in cancer cells , 2005, Nature Biotechnology.

[47]  Bernard F. Buxton,et al.  The DISOPRED server for the prediction of protein disorder , 2004, Bioinform..

[48]  L. Iakoucheva,et al.  The importance of intrinsic disorder for protein phosphorylation. , 2004, Nucleic acids research.

[49]  K. Shokat,et al.  Targets of the cyclin-dependent kinase Cdk1 , 2003, Nature.

[50]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[51]  Mark Gerstein,et al.  Comprehensive analysis of amino acid and nucleotide composition in eukaryotic genomes, comparing genes and pseudogenes. , 2002, Nucleic acids research.

[52]  P. Cohen,et al.  The regulation of protein function by multisite phosphorylation--a 25 year update. , 2000, Trends in biochemical sciences.

[53]  L. Pinna,et al.  How do protein kinases recognize their substrates? , 1996, Biochimica et biophysica acta.

[54]  P. Vaglio,et al.  Protein Kinase CK2 Mutants Defective in Substrate Recognition , 1996, The Journal of Biological Chemistry.

[55]  T Pawson,et al.  A noncatalytic domain conserved among cytoplasmic protein-tyrosine kinases modifies the kinase function and transforming activity of Fujinami sarcoma virus P130gag-fps , 1986, Molecular and cellular biology.

[56]  T. Hunter,et al.  Transforming gene product of Rous sarcoma virus phosphorylates tyrosine , 1980, Proceedings of the National Academy of Sciences.