Record of Albian to early Cenomanian environmental perturbation in the eastern sub-equatorial Pacific

[1]  S. Bodin,et al.  Strontium-isotope stratigraphy of the Early Cretaceous (Valanginian–Barremian): Implications for Boreal–Tethys correlation and paleoclimate , 2014 .

[2]  R. Hoffmann,et al.  The middle Toarcian cold snap: Trigger of mass extinction and carbonate factory demise , 2014 .

[3]  U. Heimhofer,et al.  Integrated stratigraphy of shallow marine Albian strata from the southern Lusitanian Basin of Portugal , 2014 .

[4]  L. Cooper,et al.  Trace metals and organic carbon in sediments of the northeastern Chukchi Sea , 2014 .

[5]  A. Immenhauser,et al.  Component-specific petrographic and geochemical characterization of fine-grained carbonates along Carboniferous and Jurassic platform-to-basin transects , 2014 .

[6]  I. Wendler A critical evaluation of carbon isotope stratigraphy and biostratigraphic implications for Late Cretaceous global correlation , 2013 .

[7]  J. Owens,et al.  Upper Albian OAE 1D Event in the Chihuahua Trough, New Mexico, U.S.A. , 2013 .

[8]  K. Föllmi,et al.  Secular change in northwestern Tethyan water-mass oxygenation during the late Hauterivian–early Aptian , 2013 .

[9]  N. Pelosi,et al.  Late Cretaceous orbitally-paced carbon isotope stratigraphy from the Bottaccione Gorge (Italy) , 2013 .

[10]  Y. Lee,et al.  Diagenetic significance of carbon, oxygen and strontium isotopic compositions in the Aptian-Albian Mural Formation in Cerro Pimas area, northern Sonora, Mexico. , 2013 .

[11]  S. Flögel,et al.  A new sediment core from the Bedoulian (Lower Aptian) stratotype at Roquefort-La Bédoule, SE France , 2013 .

[12]  Q. Tu,et al.  Albian to Santonian carbon isotope excursions and faunal extinctions in the Canadian Western Interior Sea: Recognition of eustatic sea-level controls on a forebulge setting , 2012 .

[13]  W. W. Hay,et al.  New thoughts about the Cretaceous climate and oceans , 2012 .

[14]  P. A. Dunn,et al.  Triassic Latemar cycle tops — Subaerial exposure of platform carbonates under tropical arid climate , 2012 .

[15]  K. Föllmi Early Cretaceous life, climate and anoxia , 2012 .

[16]  W. Hay,et al.  Phanerozoic environments of black shale deposition and the Wilson Cycle , 2012 .

[17]  P. Schulte,et al.  Applications of stable water and carbon isotopes in watershed research: Weathering, carbon cycling, and water balances , 2011 .

[18]  I. Jarvis,et al.  Black shale deposition, atmospheric CO2 drawdown, and cooling during the Cenomanian-Turonian Oceanic Anoxic Event , 2011 .

[19]  T. Hasegawa,et al.  Submillennial resolution carbon isotope stratigraphy across the Oceanic Anoxic Event 2 horizon in the Tappu section, Hokkaido, Japan , 2011 .

[20]  Roeland van Gilst,et al.  The sedimentary expression of oceanic anoxic event 1b in the North Atlantic , 2011 .

[21]  S. Bodin,et al.  Strontium and carbon-isotope chronostratigraphy of Barremian–Aptian shoal-water carbonates: Northern Tethyan platform drowning predates OAE 1a , 2011 .

[22]  P. Bown,et al.  The uppermost Middle and Upper Albian succession at the Col de Palluel, Hautes-Alpes, France: an integrated study (ammonites, inoceramid bivalves, planktonic foraminifera, nannofossils, geochemistry, stable oxygen and carbon isotopes, cyclostratigraphy) , 2011 .

[23]  H. Dijkstra,et al.  The mid‐Cretaceous North Atlantic nutrient trap: Black shales and OAEs , 2010 .

[24]  A. Bojar,et al.  Late Cretaceous carbon- and oxygen isotope stratigraphy, nannofossil events and paleoclimate fluctuations in the Haţeg area (SW Romania) , 2010 .

[25]  G. Stuart,et al.  Melt‐induced seismic anisotropy and magma assisted rifting in Ethiopia: Evidence from surface waves , 2010 .

[26]  J. Franklin,et al.  Volcanic Stratigraphy and Geochronology of the Cretaceous Lancones Basin, Northwestern Peru: Position and Timing of Giant VMS Deposits , 2010 .

[27]  H. Jenkyns Geochemistry of oceanic anoxic events , 2010 .

[28]  T. Yamanaka,et al.  High-resolution terrestrial carbon isotope and planktic foraminiferal records of the Upper Cenomanian to the Lower Campanian in the Northwest Pacific , 2010 .

[29]  A. Immenhauser Estimating palaeo-water depth from the physical rock record , 2009 .

[30]  T. Torsvik,et al.  Reply to comment by D. Aslanian and M. Moulin on ‘A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin’ , 2009 .

[31]  K. Emeis,et al.  Tethyan–Mediterranean organic carbon‐rich sediments from Mesozoic black shales to sapropels , 2009 .

[32]  K. Kaiho,et al.  Timing and magnitude of early Aptian extreme warming: Unraveling primary δ18O variation in indurated pelagic carbonates at Deep Sea Drilling Project Site 463, central Pacific Ocean , 2008 .

[33]  G. Shields,et al.  Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history , 2008 .

[34]  H. Jenkyns,et al.  Cretaceous oceanic anoxic events: causes and consequences , 2007 .

[35]  S. Fabbri,et al.  Iconography : The regional record of Albian oceanic anoxic events at the Apulian Platform Margin (Gargano Promontory, southern Italy) , 2007 .

[36]  K. Föllmi,et al.  Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record , 2006 .

[37]  S. Brassell,et al.  Instability in tropical Pacific sea-surface temperatures during the early Aptian , 2006 .

[38]  I. Jarvis,et al.  Secular variation in Late Cretaceous carbon isotopes: a new δ13C carbonate reference curve for the Cenomanian–Campanian (99.6–70.6 Ma) , 2006, Geological Magazine.

[39]  U. Heimhofer,et al.  Contrasting origins of Early Cretaceous black shales in the Vocontian basin: Evidence from palynological and calcareous nannofossil records , 2006 .

[40]  P. Wilson,et al.  Stable organic carbon isotope stratigraphy across Oceanic Anoxic Event 2 of Demerara Rise, western tropical Atlantic , 2005 .

[41]  L. Bulot,et al.  ALBIAN AMMONITE FAUNAS FROM PERU: THE GENUS NEODESHAYESITES CASEY, 1964 , 2005 .

[42]  J. Philip,et al.  Late Cretaceous heterozoan carbonates: palaeoenvironmental setting, relationships with rudist carbonates (Provence, south-east France) , 2005 .

[43]  A. Immenhauser High-rate sea-level change during the Mesozoic: New approaches to an old problem , 2005 .

[44]  A. Immenhauser,et al.  Microbial‐foraminiferal episodes in the Early Aptian of the southern Tethyan margin: ecological significance and possible relation to oceanic anoxic event 1a , 2005 .

[45]  P. Bown,et al.  Fluctuations in biosiliceous production and the generation of Early Cretaceous oceanic anoxic events in the Pacific Ocean (Shatsky Rise, Ocean Drilling Program Leg 198) , 2004 .

[46]  L. Bulot,et al.  Origin, phylogeny, faunal composition, and stratigraphical significance of the Albian engonoceratidae (pulchelliaceae, ammonitina) of Peru , 2004 .

[47]  N. Andersen,et al.  Absence of major vegetation and palaeoatmospheric pCO2 changes associated with oceanic anoxic event 1a (Early Aptian, SE France) , 2004 .

[48]  E. Erba,et al.  Volcanism, CO2 and palaeoclimate: a Late Jurassic–Early Cretaceous carbon and oxygen isotope record , 2004, Journal of the Geological Society.

[49]  H. Nishi,et al.  Geology and stratigraphy of forearc basin sediments in Hokkaido, Japan: Cretaceous environmental events on the north-west Pacific margin , 2004 .

[50]  M. Mutti,et al.  Nutrient and temperature controls on modern carbonate production: An example from the Gulf of California, Mexico , 2004 .

[51]  C. Hemleben,et al.  High-resolution carbon isotope records of the Aptian to Lower Albian from SE France and the Mazagan Plateau (DSDP Site 545): a stratigraphic tool for paleoceanographic and paleobiologic reconstruction , 2004 .

[52]  T. Steuber,et al.  Barremian-lower Aptian Qishn Formation, Haushi-Huqf area, Oman: a new outcrop analogue for the Kharaib/Shu’aiba reservoirs , 2004, GeoArabia.

[53]  G. Price New constraints upon isotope variation during the early Cretaceous (Barremian–Cenomanian) from the Pacific Ocean , 2003, Geological Magazine.

[54]  C. Hemleben,et al.  Forcing mechanisms for mid-Cretaceous black shale formation: evidence from the Upper Aptian and Lower Albian of the Vocontian Basin (SE France) , 2003 .

[55]  I. Jarvis,et al.  Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms , 2002 .

[56]  R. Leckie,et al.  Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous , 2002 .

[57]  Stefan Schouten,et al.  Massive Expansion of Marine Archaea During a Mid-Cretaceous Oceanic Anoxic Event , 2001, Science.

[58]  A. Nederbragt,et al.  Quantitative analysis of calcareous microfossils across the Albian-Cenomanian boundary oceanic anoxic event at DSDP Site 547 (North Atlantic) , 2001 .

[59]  R. Howarth,et al.  Strontium Isotope Stratigraphy: LOWESS Version 3: Best Fit to the Marine Sr‐Isotope Curve for 0–509 Ma and Accompanying Look‐up Table for Deriving Numerical Age , 2001, The Journal of Geology.

[60]  P. Bown,et al.  Integrated stratigraphy across the Aptian-Albian boundary in the Marnes Bleues, at the Col de Pré-Guittard, Arnayon (Drôme), and at Tartonne (Alpes-de-Haute-Provence), France: a candidate Global Boundary Stratotype Section and Boundary Point for the base of the Albian Stage , 2000 .

[61]  N. James,et al.  An epeiric ramp: low‐energy, cool‐water carbonate facies in a Tertiary inland sea, Murray Basin, South Australia , 2000 .

[62]  M. Wilmsen Evolution and demise of a mid-Cretaceous carbonate shelf: the Altamira Limestones (Cenomanian) of northern Cantabria (Spain) , 2000 .

[63]  C. Osburn,et al.  The record of global change in mid-Cretaceous (Barremian-Albian) sections from the Sierra Madre, Northeastern Mexico , 1999 .

[64]  H. Strauss,et al.  87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater , 1999 .

[65]  P. Wilson,et al.  Stratigraphy, paleoceanography, and evolution of Cretaceous Pacific guyots; relics from a greenhouse Earth , 1999 .

[66]  S. Galeotti Planktic and benthic foraminiferal distribution patterns as a response to changes in surface fertility and ocean circulation: a case study from the Late Albian ‘Amadeus Segment’ (Central Italy) , 1998, Journal of Micropalaeontology.

[67]  Richard J. Howarth,et al.  Statistics For Strontium Isotope Stratigraphy: A Robust Lowess Fit to the Marine Sr‐Isotope Curve For 0 to 206 Ma, With Look‐Up Table For Derivation of Numeric Age , 1997, The Journal of Geology.

[68]  A. Gale,et al.  The Late Albian to Early Cenomanian succession at Mont Risou near Rosans (Drôme, SE France): an integrated study (ammonites, inoceramids, planktonic foraminifera, nannofossils, oxygen and carbon isotopes) , 1996 .

[69]  R. Littke,et al.  Evolution patterns of radiolaria and organic matter variations: A new approach to identify sea-level changes in mid-Cretaceous pelagic environments , 1996 .

[70]  S. D’Hondt,et al.  Late Cretaceous Oceans and the Cool Tropic Paradox , 1996, Science.

[71]  S. Galeotti,et al.  Orbitally induced cycles in benthonic foraminiferal morphogroups and trophic structure distribution patterns from the Late Albian “Amadeus Segment” (Central Italy) , 1993, Journal of Micropalaeontology.

[72]  J. Marshall Climatic and oceanographic isotopic signals from the carbonate rock record and their preservation , 1992, Geological Magazine.

[73]  E. Jaillard Sedimentary evolution of an active margin during middle and upper cretaceous times: the north Peruvian margin from late aptian up to senonian , 1987 .

[74]  P. Hallock,et al.  Nutrient excess and the demise of coral reefs and carbonate platforms , 1986 .

[75]  W. C. Pitman,et al.  World-Wide Correlation of Mesozoic Magnetic Anomalies, and Its Implications , 1972 .

[76]  W. C. Krumbein,et al.  Stable configuration of bottom slope in a shallow sea and its bearing on geological processes , 1949 .

[77]  J. Lynch‐Stieglitz Tracers of Past Ocean Circulation , 2014 .

[78]  L. Hinnov,et al.  Chapter 27 – Cretaceous , 2012 .

[79]  D. Aslanian,et al.  A new starting point for the South and Equatorial Atlantic Ocean , 2010 .

[80]  Jean-Louis Latil,et al.  albian ammonite faunas from south america : the genus Tegoceras Hyatt, 1903 , 2009 .

[81]  W. Schlager Carbonate Sedimentology and Sequence Stratigraphy , 2005 .

[82]  J. Lynch‐Stieglitz 6.16 – Tracers of Past Ocean Circulation , 2003 .

[83]  A. Immenhauser,et al.  Origin and Significance of Isotope Shifts in Pennsylvanian Carbonates (Asturias, NW Spain) , 2002 .

[84]  J. Breheret L'Aptien et l'albien de la fosse Vocontienne (des bordures au bassin) : évolution de la sédimentation et enseignements sur les évènements anoxiques , 1995 .

[85]  J. Bréhéret The Mid-Cretaceous Organic-Rich Sediments from the Vocontian Zone of the French Southeast Basin , 1994 .

[86]  A. Mascle Hydrocarbon and petroleum geology of France , 1994 .

[87]  L. Aguirre,et al.  Thermal and geotectonic setting of Cretaceous volcanic rocks near Ica, Peru, in relation to Andean crustal thinning , 1992 .

[88]  P. Soler,et al.  Relation of magmatic activity to plate dynamics in central Peru from Late Cretaceous to present , 1990 .

[89]  S. Webb,et al.  Volcanic facies, structure, and geochemistry of the marginal basin rocks of central Peru , 1989 .

[90]  J. Breheret Indices d'un événement anoxique étendu à la Téthys alpine, à l'Albien inférieur (événement Paquier) , 1985 .

[91]  R. Matthews,et al.  Carbon and oxygen isotopes as diagenetic and stratigraphic tools: Surface and subsurface data, Barbados, West Indies , 1977 .

[92]  R. J. Dunham Classification of Carbonate Rocks According to Depositional Textures , 1962 .