Discrete-time analytic signals and Bedrosian product theorems

The aim of this paper is to discuss discrete-time analytic signals and to provide the derivation of Bedrosian product theorem for discrete-time Hilbert transform. With the aid of the continuous-time analytic signals we provide a new approach to produce the discrete-time analytic signals.

[1]  Khaled H. Hamed,et al.  Time-frequency analysis , 2003 .

[2]  S. Hahn Hilbert Transforms in Signal Processing , 1996 .

[3]  Alan V. Oppenheim,et al.  Discrete-time Signal Processing. Vol.2 , 2001 .

[4]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[5]  Qiuhui Chen,et al.  Analytic unit quadrature signals with nonlinear phase , 2005 .

[6]  P. Koosis Introduction to H[p] spaces , 1999 .

[7]  Tao Qian Analytic signals and harmonic measures , 2006 .

[8]  W. Rudin Real and complex analysis , 1968 .

[9]  K. Seip Interpolation and sampling in spaces of analytic functions , 2004 .

[10]  E. Bedrosian A Product Theorem for Hilbert Transforms , 1963 .

[11]  J. Garnett,et al.  Bounded Analytic Functions , 2006 .

[12]  A. Nuttall,et al.  On the quadrature approximation to the Hilbert transform of modulated signals , 1966 .

[13]  S. Kak The discrete Hilbert transform , 1970 .

[14]  Qiuhui Chen,et al.  Two families of unit analytic signals with nonlinear phase , 2006 .

[15]  Tao Qian,et al.  Characterization of Boundary Values of Functions in Hardy Spaces with Applications in Signal Analysis , 2005 .

[16]  Paul Koosis,et al.  Introduction to Hp Spaces , 1999 .

[17]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.

[18]  Bernard C. Picinbono,et al.  On instantaneous amplitude and phase of signals , 1997, IEEE Trans. Signal Process..