Robust adaptive Kalman filtering for systems with unknown step inputs and non-Gaussian measurement errors

Target tracking with Kalman filters is hampered by target maneuvering and unknown process and measurement noises. We show that moving data windows may be used to analyze state and measurement error sequences, determining robust estimates of bias and covariance. For steps in the system forcing functions and non-Gaussian measurement errors, the robust estimators yield improvements over linear bias and covariance estimators. Extensive simulations compare conventional, linear adaptive, and robust adaptive average step responses of a first-order system filter. Quantities examined are state estimate, state error, process and measurement covariance estimates, Kalman gain, and input step estimate.

[1]  A. Weiss,et al.  Fundamental limitations in passive time delay estimation--Part I: Narrow-band systems , 1983 .

[2]  E. Weinstein,et al.  Lower bounds on the localization errors of a moving source observed by a passive array , 1981 .

[3]  S. Nardone,et al.  Estimation of location and motion parameters of a moving source observed from a linear array , 1981 .

[4]  Thomas S. Huang,et al.  A generalization of median filtering using linear combinations of order statistics , 1983 .

[5]  B. Tapley,et al.  Adaptive sequential estimation with unknown noise statistics , 1976 .

[6]  H. Meyr,et al.  The structure and performance of estimators for real-time estimation of randomly varying time delay , 1984 .

[7]  Frederick Mosteller,et al.  Data Analysis and Regression , 1978 .

[8]  J. Bradley,et al.  Delay estimation by expected value , 1984 .

[9]  G. Clifford Carter Passive Sonar Signal Processing , 1981 .

[10]  D. Teichroew Tables of Expected Values of Order Statistics and Products of Order Statistics for Samples of Size Twenty and Less from the Normal Distribution , 1956 .

[11]  F. Groutage,et al.  State variable estimation using adaptive Kalman filter with robust smoothing , 1983, The 22nd IEEE Conference on Decision and Control.

[12]  G. Wise,et al.  A theoretical analysis of the properties of median filters , 1981 .

[13]  R. Martin,et al.  Robust bayesian estimation for the linear model and robustifying the Kalman filter , 1977 .

[14]  B. Dickinson,et al.  An approach to robust Kalman filtering , 1983, The 22nd IEEE Conference on Decision and Control.

[15]  S.A. Kassam,et al.  Robust techniques for signal processing: A survey , 1985, Proceedings of the IEEE.

[16]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[17]  J. C. Hassab,et al.  An experimental comparison of optimum and sub-optimum filters' effectiveness in the generalized correlator , 1981 .

[18]  Chaw-Bing Chang,et al.  Application of state estimation to target tracking , 1984 .