Rotation measure synthesis applied to synthetic SKA images of galaxy clusters

Future observations with next-generation radio telescopes will help us to understand the presence and evolution of magnetic fields in galaxy clusters through determination of the so-called rotation measure (RM). In this work, we applied the RM synthesis technique to synthetic first phase Square Kilometre Array mid frequency element (i.e. the SKA1-MID) radio images of a pair of merging galaxy clusters, measured between 950 and 1750 MHz with a resolution of 10 arcsec and thermal noise of 0.1μJy beam−1. The results of our RM synthesis analysis are compared with the simulation input parameters. We study two cases: one with radio haloes at the cluster centres and another without. We found that the information obtained with RM synthesis is in general agreement with the input information; however, some discrepancies are present. We characterize them in this work, with the final goal of determining the potential impact of SKA1-MID on the study of cluster magnetic fields.

[1]  R. Laing,et al.  Structure of the magnetoionic medium around the Fanaroff-Riley Class I radio galaxy 3C 449 , 2010, 1002.0811.

[2]  J. Stil,et al.  A ROTATION MEASURE IMAGE OF THE SKY , 2009 .

[3]  A. Melis,et al.  Sardinia Radio Telescope observations of Abell 194 , 2017, Astronomy & Astrophysics.

[4]  S. Schindler,et al.  Correlation of the magnetic field and the intra-cluster gas density in galaxy clusters , 2001, astro-ph/0108485.

[5]  A. Melis,et al.  Observations of a nearby filament of galaxy clusters with the Sardinia Radio Telescope , 2018, Monthly Notices of the Royal Astronomical Society.

[6]  C. Ferrari,et al.  Observations of Extended Radio Emission in Clusters , 2008, 0801.0985.

[7]  R. Cameron,et al.  The intracluster magnetic field power spectrum in Abell 665 , 2007, 0709.2652.

[8]  Gabriele Giovannini,et al.  Clusters of galaxies: observational properties of the diffuse radio emission , 2012, The Astronomy and Astrophysics Review.

[9]  F. Vazza,et al.  Magnetic Field Amplification in Galaxy Clusters and Its Simulation , 2018, Space Science Reviews.

[10]  A. Melis,et al.  Observations of the galaxy cluster CIZA J2242.8+5301 with the Sardinia Radio Telescope , 2017, 1708.07125.

[11]  N. Aghanim,et al.  ATCA observations of the MACS-Planck Radio Halo Cluster Project - I. New detection of a radio halo in PLCK G285.0-23.7 , 2016, 1608.06857.

[12]  H. Rottgering,et al.  Diffuse radio emission in MACS J1752.0+4440 , 2012, 1206.2294.

[13]  M. Murgia,et al.  Magnetic fields and Faraday rotation in clusters of galaxies , 2004 .

[14]  R. Laing,et al.  Structure of the magneto‐ionic media around the FR Class I radio galaxy 3C 449 , 2010 .

[15]  G. Giovannini,et al.  A double radio halo in the close pair of galaxy clusters Abell 399 and Abell 401 , 2009, 0911.3594.

[16]  C Horellou,et al.  A radio ridge connecting two galaxy clusters in a filament of the cosmic web , 2019, Science.

[17]  R. Cen,et al.  COMPARISONS OF COSMOLOGICAL MAGNETOHYDRODYNAMIC GALAXY CLUSTER SIMULATIONS TO RADIO OBSERVATIONS , 2012, 1209.2737.

[18]  K. Dolag,et al.  The Coma cluster magnetic field from Faraday rotation measures , 2009, 1002.0594.

[19]  B. Burn On the Depolarization of Discrete Radio Sources by Faraday Dispersion , 1965 .

[20]  Nrao,et al.  Structures of the magnetoionic media around the Fanaroff–Riley Class I radio galaxies 3C 31 and Hydra A , 2008, 0809.2411.

[21]  J. Riley,et al.  The Morphology of Extragalactic Radio Sources of High and Low Luminosity , 1974 .

[22]  G. Giovannini,et al.  A2255: the First Detection of Filamentary Polarized Emission in a Radio Halo , 2004, astro-ph/0411720.

[23]  M. Trasatti,et al.  A multiwavelength view of the galaxy cluster Abell 523 and its peculiar diffuse radio source , 2015, 1510.05951.

[24]  G. Pratt,et al.  The ATCA REXCESS Diffuse Emission Survey (ARDES) – I. Detection of a giant radio halo and a likely radio relic , 2016 .

[25]  F. Zandanel,et al.  Diffuse Radio Emission from Galaxy Clusters , 2019, Space Science Reviews.

[26]  K. Institute,et al.  Faraday rotation measure synthesis , 2005, astro-ph/0507349.

[27]  L. Feretti,et al.  MAGNETIC FIELDS IN CLUSTERS OF GALAXIES , 2004, astro-ph/0410182.

[28]  G. Brunetti,et al.  Relativistic protons in the Coma galaxy cluster: first gamma-ray constraints ever on turbulent reacceleration , 2017, 1707.02085.

[29]  Hui Li,et al.  Cosmological AMR MHD with Enzo , 2009, 0902.2594.

[30]  V Vacca,et al.  Simulations of the polarized radio sky and predictions on the confusion limit in polarization for future radio surveys , 2019, Monthly Notices of the Royal Astronomical Society.

[31]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[32]  M. L. Norman,et al.  Polarization of cluster radio halos with upcoming radio interferometers , 2013, 1304.6260.

[33]  H. Ebeling,et al.  Revealing the magnetic field in a distant galaxy cluster: discovery of the complex radio emission from MACS J0717.5 +3745 , 2009, 0905.3552.

[34]  J. Anderson,et al.  Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes , 2013, 1303.6230.

[35]  B. Dennison,et al.  On intracluster Faraday rotation. II - Statistical analysis , 1982 .

[36]  Andreas Reisenegger,et al.  Clusters, lensing, and the future of the universe : a symposium held in Conjunction with the 160th Annual Meeting of the ASP at the University of Maryland, College Park, Maryland, 26-28 June 1995 , 1996 .

[37]  T. Clarke Faraday rotation observations of magnetic fields in galaxy clusters , 2004, astro-ph/0412268.

[38]  H. Intema,et al.  A study of diffuse radio sources and X-ray emission in six massive clusters , 2016, 1608.02796.

[39]  V. Vacca,et al.  The nature of the giant diffuse non-thermal source in the A3411-A3412 complex , 2013, 1307.4923.

[40]  Radio Sources in Galaxy Clusters: Radial Distribution, and 1.4 GHz and K-band Bivariate Luminosity Function , 2006, astro-ph/0612521.

[41]  C. Benoist,et al.  Detection of diffuse radio emission in the galaxy clusters A800, A910, A1550, and CL 1446+26 , 2012, 1207.2915.

[42]  V. Vacca,et al.  The intracluster magnetic field power spectrum in Abell 2255 , 2006, astro-ph/0608433.

[43]  T. Ensslin,et al.  The magnetic power spectrum in Faraday rotation screens , 2003, astro-ph/0302426.

[44]  R. Perley,et al.  The intracluster magnetic field power spectrum in A2199 , 2012, 1201.4119.