Preference Elicitation For General Random Utility Models

This paper discusses General Random Utility Models (GRUMs). These are a class of parametric models that generate partial ranks over alternatives given attributes of agents and alternatives. We propose two preference elicitation scheme for GRUMs developed from principles in Bayesian experimental design, one for social choice and the other for personalized choice. We couple this with a general Monte-Carlo-Expectation-Maximization (MC-EM) based algorithm for MAP inference under GRUMs. We also prove uni-modality of the likelihood functions for a class of GRUMs. We examine the performance of various criteria by experimental studies, which show that the proposed elicitation scheme increases the precision of estimation.

[1]  R. A. Bradley,et al.  Rank Analysis of Incomplete Block Designs: I. The Method of Paired Comparisons , 1952 .

[2]  R. Plackett The Analysis of Permutations , 1975 .

[3]  Vincent Conitzer,et al.  Vote elicitation: complexity and strategy-proofness , 2002, AAAI/IAAI.

[4]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS , 1952 .

[5]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[6]  Steven Berry,et al.  Differentiated Products Demand Systems from a Combination of Micro and Macro Data: The New Car Market , 1998, Journal of Political Economy.

[7]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[8]  Joan L. Walker,et al.  Generalized random utility model , 2002, Math. Soc. Sci..

[9]  Toshihiro Kamishima,et al.  Nantonac collaborative filtering: recommendation based on order responses , 2003, KDD '03.

[10]  Craig Boutilier,et al.  Robust Approximation and Incremental Elicitation in Voting Protocols , 2011, IJCAI.

[11]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[12]  T. Louis Finding the Observed Information Matrix When Using the EM Algorithm , 1982 .

[13]  Zoubin Ghahramani,et al.  Collaborative Gaussian Processes for Preference Learning , 2012, NIPS.

[14]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[15]  Craig Boutilier,et al.  On the Foundations of Expected Expected Utility , 2003, IJCAI.

[16]  Lirong Xia,et al.  Sequential composition of voting rules in multi-issue domains , 2009, Math. Soc. Sci..

[17]  David C. Parkes,et al.  Random Utility Theory for Social Choice , 2012, NIPS.

[18]  Steven T. Berry,et al.  Automobile Prices in Market Equilibrium , 1995 .

[19]  Craig Boutilier,et al.  Computational Decision Support: Regret-based Models for Optimization and Preference Elicitation , 2012 .

[20]  Tuomas Sandholm,et al.  Preference elicitation in combinatorial auctions , 2002, EC '01.

[21]  Thomas Pfeiffer,et al.  Adaptive Polling for Information Aggregation , 2012, AAAI.

[22]  L. R. Ford Solution of a Ranking Problem from Binary Comparisons , 1957 .

[23]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[24]  Scott Sanner,et al.  Gaussian Process Preference Elicitation , 2010, NIPS.

[25]  Tuomas Sandholm,et al.  Preference elicitation in combinatorial auctions , 2001, AAMAS '02.

[26]  Daphne Koller,et al.  Making Rational Decisions Using Adaptive Utility Elicitation , 2000, AAAI/IAAI.