MR imaging of the chest: a practical approach at 1.5T.

Magnetic resonance imaging (MRI) is capable of imaging infiltrative lung diseases as well as solid lung pathologies with high sensitivity. The broad use of lung MRI was limited by the long study time as well as its sensitivity to motion and susceptibility artifacts. These disadvantages were overcome by the utilisation of new techniques such as parallel imaging. This article aims to propose a standard MR imaging protocol at 1.5T and presents a spectrum of indications. The standard protocol comprises non-contrast-enhanced sequences. Following a GRE localizer (2D-FLASH), a coronal T2w single-shot half-Fourier TSE (HASTE) sequence with a high sensitivity for infiltrates and a transversal T1w 3D-GRE (VIBE) sequence with a high sensitivity for small lesions are acquired in a single breath hold. Afterwards, a coronal steady-state free precession sequence (TrueFISP) in free breathing is obtained. This sequence has a high sensitivity for central pulmonary embolism. Distinct cardiac dysfunctions as well as an impairment of the breathing mechanism are visible. The last step of the basic protocol is a transversal T2w-STIR (T2-TIRM) in a multi-breath holds technique to visualize enlarged lymph nodes as well as skeletal lesions. The in-room time is approximately 15min. The extended protocol comprises contrast-enhanced sequences (3D-GRE sequence (VIBE) after contrast media; about five additional minutes). Indications are tumorous lesions, unclear (malignant) pleural effusions and inflammatory diseases (vaskulitis). A perfusion analysis can be achieved using a 3D-GRE in shared echo-technique (TREAT) with a high temporal resolution. This protocol can be completed using a MR-angiography (3D-FLASH) with high spatial resolution. The in-room time for the complete protocol is approximately 30min.

[1]  Hans-Peter Meinzer,et al.  Assessment of reproducibility and stability of different breath-hold maneuvres by dynamic MRI: comparison between healthy adults and patients with pulmonary hypertension , 2005, European Radiology.

[2]  Michael Bock,et al.  High‐resolution pulmonary arterio‐ and venography using multiple‐bolus multiphase 3D‐gd‐mRA , 1999, Journal of magnetic resonance imaging : JMRI.

[3]  J. Biederer,et al.  Simulated pulmonary nodules implanted in a dedicated porcine chest phantom: sensitivity of MR imaging for detection. , 2003, Radiology.

[4]  J. Jett,et al.  Primary mediastinal tumors. Part 1: tumors of the anterior mediastinum. , 1997, Chest.

[5]  Michael Bock,et al.  Regional lung perfusion: assessment with partially parallel three-dimensional MR imaging. , 2004, Radiology.

[6]  H. Enterline,et al.  Tumors of the anterior mediastinum , 1958, Cancer.

[7]  M. Heller,et al.  Sensitivitt der MRT fr alveolre Infiltrate: Experimentelle Untersuchungen , 2002 .

[8]  H. Kauczor,et al.  MRT zum Staging des Lungenkarzinoms , 2006, Der Radiologe.

[9]  J. Finn,et al.  Cardiac MR imaging: state of the technology. , 2006, Radiology.

[10]  R R Edelman,et al.  Evaluation of regional pulmonary perfusion using ultrafast magnetic resonance imaging , 2001, Magnetic resonance in medicine.

[11]  K. Sugimura,et al.  Diagnosis of chest wall invasion by lung cancer: useful criteria for exclusion of the possibility of chest wall invasion with MR imaging. , 2000, Radiation medicine.

[12]  C. Leutner,et al.  MRT des Lungenparenchyms , 2001 .

[13]  P. Croisille,et al.  Prospective comparison of MR lung perfusion and lung scintigraphy , 1999, Journal of magnetic resonance imaging : JMRI.

[14]  J. Biederer,et al.  Analysis of artefacts and detail resolution of lung MRI with breath-hold T1-weighted gradient-echo and T2-weighted fast spin-echo sequences with respiratory triggering , 2002, European Radiology.

[15]  A. Kluge,et al.  Thorakale Echtzeit-MRT: Erfahrungen aus 2200 Untersuchungen bei akuten und unklaren thorakalen Erkrankungen , 2005 .

[16]  R R Edelman,et al.  Pulmonary perfusion: Qualitative assessment with dynamic contrast‐enhanced MRI using ultra‐short TE and inversion recovery turbo FLASH , 1996, Magnetic resonance in medicine.

[17]  H. Shima,et al.  Effect of the rate of gadolinium injection on magnetic resonance pulmonary perfusion imaging , 2002, Journal of magnetic resonance imaging : JMRI.

[18]  C. Weschler,et al.  Systematische Analyse der Geometrie eines definierten Kontrastmittelbolus - Implikationen für die kontrastmittelverstärkte 3D-MR-Angiographie thorakaler Gefäße , 2005 .

[19]  Konstantin Nikolaou,et al.  Quantification of Pulmonary Blood Flow and Volume in Healthy Volunteers by Dynamic Contrast-Enhanced Magnetic Resonance Imaging Using a Parallel Imaging Technique , 2004, Investigative radiology.

[20]  R. Hubner,et al.  Fast T1- and T2-weighted pulmonary MR-imaging in patients with bronchial carcinoma. , 2005, European journal of radiology.

[21]  Tore Amundsen,et al.  Perfusion abnormalities in pulmonary embolism studied with perfusion MRI and ventilation‐perfusion scintigraphy: An intra‐modality and inter‐modality agreement study , 2002, Journal of magnetic resonance imaging : JMRI.

[22]  Y. Ohno,et al.  Dynamic perfusion MRI versus perfusion scintigraphy: prediction of postoperative lung function in patients with lung cancer. , 2004, AJR. American journal of roentgenology.

[23]  J. Jett,et al.  Primary mediastinal tumors: part II. Tumors of the middle and posterior mediastinum. , 1997, Chest.

[24]  M. Prince Gadolinium-enhanced MR aortography. , 1990, Radiology.

[25]  J. Biederer,et al.  Magnetic resonance imaging of the lung with a volumetric interpolated 3D-gradient echo sequence. , 2001, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[26]  K. Kreitner,et al.  [Contrast-enhanced 3D MR angiography of the pulmonary arteries with integrated parallel acquisition technique (iPAT) in patients with chronic-thromboembolic pulmonary hypertension CTEPH - sagittal or coronal acquisition?]. , 2004, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[27]  Jürgen Biederer,et al.  Lung morphology: fast MR imaging assessment with a volumetric interpolated breath-hold technique: initial experience with patients. , 2003, Radiology.

[28]  Gerhard Laub,et al.  Dynamic 3D MR angiography of the pulmonary arteries in under four seconds , 2001, Journal of magnetic resonance imaging : JMRI.

[29]  J. Lima,et al.  Cardiovascular magnetic resonance imaging: current and emerging applications. , 2004, Journal of the American College of Cardiology.

[30]  O. Schulte,et al.  MR imaging of the chest: Mediastinum and chest wall , 1999, European Radiology.

[31]  H. Schild,et al.  MRT versus CT in der Diagnostik von Pneumonien : Evaluation einer T2-gewichteten ultraschnellen Turbo-Spin-Echo-Sequenz (UTSE) , 1999 .