Optimal wide area control of a power system with limited measurements

The objective of this paper is to design a state feedback controller to damp out the inter-area oscillations in the power system network with limited wide area measurements. The conventional state feedback controller designed through LQR optimization requires all the state variables as input. However, the dynamics of a power system is governed by a large number of state variables. Therefore, it is, practically, not possible to place sensors everywhere for monitoring the complete system state in real-time. In order to address the particular issue, an optimized state feedback controller is proposed, which can be implemented with limited number of state inputs. The structurally constrained H2-norm optimization technique is employed to perform the proposed state feedback controller design. The reference frame requirement for defining the rotor angles of generators under the scenario of limited state observability is also investigated. The performance of the wide area controller with limited state inputs is verified through a case study on the New England 39-bus system under different scenarios of state unobservability.

[1]  I. C. Decker,et al.  Wide-Area Measurements-Based Two-Level Control Design Considering Signal Transmission Delay , 2009, IEEE Transactions on Power Systems.

[2]  K. R. Padiyar,et al.  ENERGY FUNCTION ANALYSIS FOR POWER SYSTEM STABILITY , 1990 .

[3]  Yang Zhang,et al.  Design of Wide-Area Damping Controllers for Interarea Oscillations , 2008, IEEE Transactions on Power Systems.

[4]  Fu Lin,et al.  Augmented Lagrangian Approach to Design of Structured Optimal State Feedback Gains , 2011, IEEE Transactions on Automatic Control.

[5]  R. Majumder,et al.  Design and real-time implementation of robust FACTS controller for damping inter-area oscillation , 2006, IEEE Transactions on Power Systems.

[6]  Innocent Kamwa,et al.  Wide-area measurement based stabilizing control of large power systems-a decentralized/hierarchical approach , 2001 .

[7]  Peter W. Sauer,et al.  Power System Dynamics and Stability , 1997 .

[8]  Jovica V. Milanovic,et al.  Damping of inter-area oscillations in mixed AC/DC networks using WAMS based supplementary controller , 2013, IEEE Transactions on Power Systems.

[9]  Fu Lin,et al.  Design of Optimal Sparse Feedback Gains via the Alternating Direction Method of Multipliers , 2011, IEEE Transactions on Automatic Control.

[10]  Michael Chertkov,et al.  Sparsity-Promoting Optimal Wide-Area Control of Power Networks , 2013, IEEE Transactions on Power Systems.

[11]  Imad M. Jaimoukha,et al.  A Study on LQG/LTR Control for Damping Inter-Area Oscillations in Power Systems , 2007, IEEE Transactions on Control Systems Technology.

[12]  Bikash C. Pal,et al.  Robust and coordinated tuning of power system stabiliser gains using sequential linear programming , 2010 .

[13]  P. Kundur,et al.  Power system stability and control , 1994 .

[14]  Innocent Kamwa,et al.  Online State Estimation of a Synchronous Generator Using Unscented Kalman Filter From Phasor Measurements Units , 2011, IEEE Transactions on Energy Conversion.