Plasmonic nature of the terahertz conductivity peak in single-wall carbon nanotubes.

Plasmon resonance is expected to occur in metallic and doped semiconducting carbon nanotubes in the terahertz frequency range, but its convincing identification has so far been elusive. The origin of the terahertz conductivity peak commonly observed for carbon nanotube ensembles remains controversial. Here we present results of optical, terahertz, and direct current (DC) transport measurements on highly enriched metallic and semiconducting nanotube films. A broad and strong terahertz conductivity peak appears in both types of films, whose behaviors are consistent with the plasmon resonance explanation, firmly ruling out other alternative explanations such as absorption due to curvature-induced gaps.

[1]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[2]  R. Hauge,et al.  Collective antenna effects in the terahertz and infrared response of highly aligned carbon nanotube arrays , 2013, 1301.1478.

[3]  M. Zheng,et al.  Fundamental optical processes in armchair carbon nanotubes. , 2012, Nanoscale.

[4]  Junichiro Kono,et al.  Optoelectronic Properties of Single‐Wall Carbon Nanotubes , 2012, Advanced materials.

[5]  M. Pasquali,et al.  Nematic-Like Alignment in SWNT Thin Films from Aqueous Colloidal Suspensions , 2012 .

[6]  M. Tonouchi,et al.  Terahertz Dynamics of Quantum-Confined Electrons in Carbon Nanomaterials , 2012, 1205.6171.

[7]  C. Thomsen,et al.  Experimental evidence of localized plasmon resonance in composite materials containing single-wall carbon nanotubes , 2012 .

[8]  Masayoshi Tonouchi,et al.  Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks. , 2012, Nano letters.

[9]  H. Kataura,et al.  Absorption spectra of high purity metallic and semiconducting single-walled carbon nanotube thin films in a wide energy region , 2011 .

[10]  R. Hauge,et al.  Unique origin of colors of armchair carbon nanotubes. , 2011, Journal of the American Chemical Society.

[11]  M. Lima,et al.  A reel-wound carbon nanotube polarizer for terahertz frequencies. , 2011, Nano letters.

[12]  'Aron Pekker,et al.  Wide-range optical studies on various single-walled carbon nanotubes: Origin of the low-energy gap , 2011, 1101.4586.

[13]  R. R. Hartmann,et al.  Excitons in narrow-gap carbon nanotubes , 2010, 1012.5517.

[14]  C. Thomsen,et al.  Terahertz conductivity peak in composite materials containing carbon nanotubes: Theory and interpretation of experiment , 2010 .

[15]  R. Hauge,et al.  Enrichment of armchair carbon nanotubes via density gradient ultracentrifugation: Raman spectroscopy evidence. , 2009, ACS nano.

[16]  T. Ando,et al.  Optical Response of Finite-Length Carbon Nanotubes , 2009, 0909.1908.

[17]  D. Hilton,et al.  Carbon nanotube terahertz polarizer. , 2009, Nano letters.

[18]  R. Martel,et al.  Mechanism of the far-infrared absorption of carbon-nanotube films. , 2008, Physical review letters.

[19]  Phaedon Avouris,et al.  Carbon-nanotube photonics and optoelectronics , 2008 .

[20]  Oleg V. Kibis,et al.  Terahertz applications of carbon nanotubes , 2008 .

[21]  H. Kataura,et al.  Optical and Conductive Characteristics of Metallic Single-Wall Carbon Nanotubes with Three Basic Colors; Cyan, Magenta, and Yellow , 2008 .

[22]  M. Portnoi,et al.  Generation of terahertz radiation by hot electrons in carbon nanotubes. , 2007, Nano letters.

[23]  R. Shimano,et al.  Dielectric properties of single-walled carbon nanotubes in the terahertz frequency range , 2007 .

[24]  G. Slepyan,et al.  Thermal radiation from carbon nanotubes in the terahertz range. , 2007, Physical review letters.

[25]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[26]  A. Rinzler,et al.  Charge dynamics in transparent single-walled carbon nanotube films from optical transmission measurements , 2006 .

[27]  O. Zhou,et al.  Strong Anisotropy in the Far‐Infrared Absorption Spectra of Stretch‐Aligned Single‐Walled Carbon Nanotubes , 2006 .

[28]  Joo-Hiuk Son,et al.  Terahertz absorption and dispersion of fluorine-doped single-walled carbon nanotube , 2005 .

[29]  Wanjun Park,et al.  Oxygen-induced p-type doping of a long individual single-walled carbon nanotube , 2005 .

[30]  G. Hanson Fundamental transmitting properties of carbon nanotube antennas , 2005, IEEE Transactions on Antennas and Propagation.

[31]  M. Arnold,et al.  Enrichment of single-walled carbon nanotubes by diameter in density gradients. , 2005, Nano letters.

[32]  P. Burke,et al.  Quantitative theory of nanowire and nanotube antenna performance , 2004, IEEE Transactions on Nanotechnology.

[33]  Joo-Hiuk Son,et al.  Optical and electrical properties of preferentially anisotropic single-walled carbon-nanotube films in terahertz region , 2004 .

[34]  Joo-Hiuk Son,et al.  Terahertz conductivity of anisotropic single walled carbon nanotube films , 2002 .

[35]  M. Itkis,et al.  Spectroscopic Study of the Fermi Level Electronic Structure of Single-Walled Carbon Nanotubes , 2002 .

[36]  N. V. Smith,et al.  Classical generalization of the Drude formula for the optical conductivity , 2001 .

[37]  Charles M. Lieber,et al.  Energy Gaps in "Metallic" Single-Walled Carbon Nanotubes , 2001, Science.

[38]  P. Poncharal,et al.  Water-vapor effect on the electrical conductivity of a single-walled carbon nanotube mat , 2000 .

[39]  Andrew G. Rinzler,et al.  Far-Infrared gaps in single-wall carbon nanotubes , 1999 .

[40]  T. Ando Excitons in Carbon Nanotubes , 1997 .

[41]  C. Kane,et al.  Size, Shape, and Low Energy Electronic Structure of Carbon Nanotubes , 1996, cond-mat/9608146.

[42]  L. Forró,et al.  Evidence of anisotropic metallic behaviour in the optical properties of carbon nanotubes , 1996 .

[43]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[44]  H. Philipp,et al.  Optical Properties of Graphite , 1965 .

[45]  Martin Dressel,et al.  Electrodynamics of solids , 2002 .

[46]  J. Orenstein,et al.  Terahertz time-domain spectroscopy , 1998 .