Search Space Pruning Constraints Visualization

The field of software optimization, among others, is interested in finding an optimal solution in a large search space. These search spaces are often large, complex, non-linear and even non-continuous at times. The size of the search space makes a brute force solution intractable. As a result, one or more search space pruning constraints are often used to reduce the number of candidate configurations that must be evaluated in order to solve the optimization problem. If more than one pruning constraint is employed, it can be challenging to understand how the pruning constraints interact and overlap. This work presents a visualization technique based on a radial, space-filling technique that allows the user to gain a better understanding of how the pruning constraints remove candidates from the search space. The technique is then demonstrated using a search space pruning data set derived from the optimization of a matrix multiplication code for NVIDIA CUDA accelerators.

[1]  Paul R. Cohen,et al.  Visualization Tools for Real-time Search Algorithms , 2000 .

[2]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[3]  Christophe Hurter,et al.  Visualization of Frequent Itemsets with Nested Circular Layout and Bundling Algorithm , 2013, ISVC.

[4]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[5]  Li Yang,et al.  Pruning and visualizing generalized association rules in parallel coordinates , 2005, IEEE Transactions on Knowledge and Data Engineering.

[6]  Yuefan Deng,et al.  New trends in high performance computing , 2001, Parallel Computing.

[7]  Jack J. Dongarra,et al.  Automated empirical optimizations of software and the ATLAS project , 2001, Parallel Comput..

[8]  M. N. Vrahatis,et al.  OPTAC: a portable software package for analyzing and comparing optimization methods by visualization , 1996 .

[9]  Jack J. Dongarra,et al.  Automatically Tuned Linear Algebra Software , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[10]  Heikki Mannila,et al.  Finding interesting rules from large sets of discovered association rules , 1994, CIKM '94.

[11]  Matthew O. Ward,et al.  InterRing: an interactive tool for visually navigating and manipulating hierarchical structures , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[12]  John T. Stasko,et al.  An evaluation of space-filling information visualizations for depicting hierarchical structures , 2000, Int. J. Hum. Comput. Stud..

[13]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[14]  J. Hartigan,et al.  Representing Points in Many Dimensions by Trees and Castles , 1981 .

[15]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.