Functorial Semantics for Relational Theories

We introduce the concept of Frobenius theory as a generalisation of Lawvere's functorial semantics approach to categorical universal algebra. Whereas the universe for models of Lawvere theories is the category of sets and functions, or more generally cartesian categories, Frobenius theories take their models in the category of sets and relations, or more generally in cartesian bicategories.

[1]  S. Maclane,et al.  Categorical Algebra , 2007 .

[2]  A. Carboni,et al.  Cartesian bicategories I , 1987 .

[3]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[4]  Kosta Dosen,et al.  Syntax for split preorders , 2009, Ann. Pure Appl. Log..

[5]  lawa Kanas,et al.  Metric Spaces , 2020, An Introduction to Functional Analysis.

[6]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Roberto Bruni,et al.  A basic algebra of stateless connectors , 2006, Theor. Comput. Sci..

[8]  Filippo Bonchi,et al.  Interacting Bialgebras Are Frobenius , 2014, FoSSaCS.

[9]  Filippo Bonchi,et al.  Full Abstraction for Signal Flow Graphs , 2015, POPL.

[10]  F. William Lawvere,et al.  Metric spaces, generalized logic, and closed categories , 1973 .

[11]  Fabio Zanasi,et al.  The Algebra of Partial Equivalence Relations , 2016, MFPS.

[12]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[13]  Roberto Bruni,et al.  Some algebraic laws for spans , 2001, Electron. Notes Theor. Comput. Sci..

[14]  John C. Baez,et al.  Categories in Control , 2014, 1405.6881.

[15]  Filippo Bonchi,et al.  A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.

[16]  Filippo Bonchi,et al.  Interacting Hopf Algebras , 2014, ArXiv.

[17]  John Power,et al.  The Category Theoretic Understanding of Universal Algebra: Lawvere Theories and Monads , 2007, Computation, Meaning, and Logic.

[18]  Brendan Fong,et al.  Corelations are the prop for extraspecial commutative Frobenius monoids , 2016, 1601.02307.

[19]  Pawel Sobocinski,et al.  Nets, Relations and Linking Diagrams , 2013, CALCO.

[20]  Donald Yau,et al.  Categories , 2021, 2-Dimensional Categories.